Jump to content

JOIN THE DISCUSSION!

Want to join the discussions?

Sign up for a free membership! 

If you are a member already, log in!

(lost your password? reset it here)

99nicu.org 99nicu.org
  • entries
    125
  • comments
    97
  • views
    29,362

About this blog

I am a Neonatologist trained in Winnipeg, Manitoba and Edmonton, Alberta.  My current position is Section Head of Neonatology in Manitoba and over my career my interests have meandered from time to time.  I have been a past Program Director of Neonatology and Medical Director for a level II Intensive Care Unit prior to relocating to Winnipeg become a Section Head.

Welcome to my blog which I hope will provide a forum for discussion on topics that are of interest to Neonatologists, trainees, all health care professionals and in some cases parents of those we care for.  My intent is to post opinions and analysis on both items from the media and literature that pertain to neonates.  While I have many interests, my particular motivation is to find ways to reduce discomfort for the patients that we care for.  Whether it is through the use of non-invasive testing or finding a way to improve the patient experience this is where I find myself most energized.

I chose the picture for this site as since the inception of this site there is hardly a country that has not had an individual or many people view posts.  Moreover I have received comments from many people from so many different countries that have inspired me to think not just about the impact of these posts in North America but more globally as well.

If you like what you see and would like updates to be sent to you as they are published feel free to follow the site by clicking the follow button on the sidebar to the bottom right.  You can also follow both my Twitter (@NICU_Musings) and Facebook feeds for additional content and discussion by clicking the additional links found there.

My Facebook page serves as a better means of expanding dialogue on a variety of topics and posts

https://www.facebook.com/allthingsneonatal

Please share and like to help expand the circle of knowledge

Entries in this blog

 

You don’t plan to fail. You fail to plan

I am fortunate to work with a group of inter-professionals who strive for perfection.  When you connect such people with those with skills in multimedia you create the opportunity for education.  I can’t say enough about the power of education and moreover the ability to improve patient outcomes when it is done well. With this post I am going to be starting to share a collection of videos that I will release from time to time.  The hope with any release like this is that you the reader wherever you are may find some use from these short clips.  My thanks to the team that put these together as the quality is beyond compare and the HD quality is great for viewing on any device. Placing A Chest Tube Can Be A Difficult Thing As I said to a colleague in training the other day, a chest tube may seem daunting but once you see how it is done it loses some of its intimidation.  Having said that, once you see it placed it can be a long time between opportunities for you to view another.  That is where having a repository of videos comes in that you can watch prior to the next opportunity.  These very short clips are easy to access when needed and may calm the nerves the next time you are called to place a chest tube. A Word About Chest Tubes The videos in question demonstrate how to place a Thal quick chest tube. In case this looks foreign to you it may be because you are using the older generation style of chest tubes that come equipped with a trocar.  Even without the use of the trocar, these rigid tubes carry a significant risk of lung laceration or other tissue injury.  For a review of such complications related to chest tube insertion see Thoracostomy tubes: A comprehensive review of complications and related topics. The jury as they say is still out with respect to the use of these softer chest tube sets.  There is no question that they are easier to place than the traditional thoracostomy tube.  Their pliability though does carry a significant risk of kinking or blockage as we have seen in some patients when the Thal chest tube set is used to drain fluid in particular.  Less of an issue with air leaks. Start of a series This post I suppose marks a slightly new direction for the blog.  While I thoroughly enjoy educating you with the posts about topics of interest I see an opportunity to help those who are more visual in their learning.  The videos will be posted over the next while with accompanying written posts such as this.  They can be accessed on my Youtube channel at All Things Neonatal YouTube To receive regular updates as new videos are added feel free to subscribe! Lastly a big thank you to NS, RH and GS without whom none of this would have been possible!

AllThingsNeonatal

AllThingsNeonatal

 

Why does ETT epinephrine get such a bad rap?

I think my first training in resuscitation began with the principles outlined in the NRP 3rd edition program.  As we have moved through subsequent editions with the current edition being number 7, I can’t help but think about how many changes have occurred over that time.  One such change has been the approach to using medications as part of a resuscitation.  Gone are such things as calcium gluconate, naloxone and sodium bicarbonate but something that has stood the test of time is epinephrine.  The dosing and recommendations for administering epinephrine have changed over time as well with the dose of endotracheal medication increasing from 0.01 to 0.03 and now to 0.05 – 0.1 mg/kg.  While this dosing has increased, that of IV administration has remained the same at 0.01 to 0.03 mg/kg.  The change in dosing for the ETT route was due to an increasing awareness that this route just isn’t as effective as IV.  Having said that with only 0.1% of resuscitations requiring such support the experience with either route is fairly limited. What is the concern? Giving a medication directly via the IV route ensures the dose reaches the heart in the amount desired.  In the case of ETT administration there are a few potential issues along the way.  The first is that one needs to push the dose down the ETT and this presumes the ETT is actually in the trachea (could have become dislodged).  Secondly, if the medication is sent to the lung what effect does the liquid component in the airways have in terms of dilution and distribution of the medication?  Lastly, even if you get the epinephrine to the lung it must be picked up at the capillary level and then returned to the left side of the heart.  In the absence of significant forward pulmonary blood flow this is not assured. What is the evidence? In terms of human clinical research it remains fairly limited.  Barber published a retrospective review of 47 newborns who received epinephrine via the endotracheal route.  The study Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room found that spontaneous circulation was restored in 32% of this cohort.  Following the first dose, a subsequent dose of intravenous epinephrine restored circulation in 77%.  This study provided the first suggestion that the IV route may be better than endotracheal.  Keep in mind though that this study was retrospective and as the authors conclude in the end, prospective studies are needed to confirm these findings.  The question really is what is the likelihood of restoring circulation if the first dose is given IV? Eleven years later we have a second study that attempts to answer this question although once again it is retrospective. Efficacy of Intravenous and Endotracheal Epinephrine during NeonatalCardiopulmonary Resuscitation in the Delivery Room by Halling et al. This study really was designed to answer two questions.  The study group looked at the period from July 2006 to July 2014.  During this period the dose of IV epinephrine remained unchanged as per NRP recommendations but the dose of endotracheal epinephrine increased from 0.01 to 0.03 and then to 0.05 mg/kg endotracheally.  The increase was in response to both NRP and site observations that the lower doses were not achieving the effect they were hoping for. The Results   ETT epinephrine IV Epinephrine Number 30 20 Return of circulation 23 15 1 dose 6 4 2 dose 5 8 3 doses 9 0 4 doses 3 3 In the ETT group all doses except for 3 after the first dose were given as IV.  There was no difference in the response rate over time suggesting that higher doses do not truly increase the chance of a better response.  The authors noted that the effectiveness of the two arms were not that different despite a significantly higher dose of epinephrine being administered to the group receiving ETT epinephrine first which is not surprising given the higher recommended dosages. What I find interesting though is that giving the first dose of epinephrine was given IV in 20 of the paitents, if it is indeed the better route one might expect a better response than in the ETT group.  The response from one dose of ETT epi was 20% while that from the IV first group was in fact also only 20%!  We do indeed need to be careful here with small numbers but the results at least to me do not suggest strongly that giving IV epi first ensures success. What the study suggests to me is that two doses of epinephrine may be needed to restore circulation.  If you choose to start with IV it certainly does not seem unwise but if you have any delays I don’t see any reason to avoid ETT epinephrine as your first line. The reality is that for many individuals a UVC is a procedure that while they may have learned in an NRP class they may have never actually placed one.  Having an ETT in place though seems like a good place to start.  I doubt we will ever see a randomized trial of ETT vs IV epinephrine in Neonatology at this point given the stance by the NRP so these sorts of studies I suspect will be the best we get. For now, based on what is out there I suggest use the route that you can get first but expect to need additional doses at least one more time to achieve success.  Lastly remember that even if you do everything correct there will be some that cannot be brought back.  Rest assured though that if the first dose was given via ETT you have still done your best if that was the route you had.

AllThingsNeonatal

AllThingsNeonatal

 

Why do we keep treating reflux in preemies?

Choosing wisely is an initiative to “identify tests or procedures commonly used whose necessity should be questioned and discussed with patients. The goal of the campaign is to reduce waste in the health care system and avoid risks associated with unnecessary treatment.” The AAP Section on Perinatal Pediatrics puts the following forth as one of their recommendations. “Avoid routine use of anti-reflux medications for treatment of symptomatic gastroesophageal reflux disease (GERD) or for treatment of apnea and desaturation in preterm infants. Gastroesophageal reflux is normal in infants. There is minimal evidence that reflux causes apnea and desaturation. Similarly, there is little scientific support for the use of H2 antagonists, proton-pump inhibitors, and motility agents for the treatment of symptomatic reflux. Importantly, several studies show that their use may have adverse physiologic effects as well as an association with necrotizing enterocolitis, infection and, possibly, intraventricular hemorrhage and mortality.” How strong is the evidence? The evidence for risk with acid suppression is largely based on either retrospective or in the case of Terrin G et al a prospective observational cohort study Ranitidine is Associated With Infections, Necrotizing Enterocolitis, and Fatal Outcome in Newborns.  In this study the authors compared a group of premature infants with birth weights between 401 – 1500g or 24 – 32 weeks gestation who received ranitidine for reflux symptoms to those who did not.  All told 91 were exposed while 183 were not.  The authors are to be commended for standardizing the feeding protocol in the study so that when comparing NEC between groups one could not blame differences in formula consumption or rate of feeding advancement.  Additionally, bias was controlled by having those not involved in care collect outcome data without knowing the purpose of the study.  Having said that, they may have been able to ascertain that ranitidine was used and have been influenced in their assessments. The patients in terms of risk factors for poor outcome including CRIB and apgar scores, PDA etc were no different to explain an increased risk for adverse outcome. From the above table, rates of infections were clearly higher in the ranitidine group but more concerning was the higher rate of mortality at 9.9% vs 1.6% P=0.003 and longer hospitalization median 52 vs 36 days P=0.001. Results of a Meta-Analysis Additional, evidence suggesting harm comes from a meta-analysis on the topic by More K, Association of Inhibitors of Gastric Acid Secretion and Higher Incidence of Necrotizing Enterocolitis in Preterm Very Low-Birth-Weight Infants.  This analysis actually includes the study by Terrin and only one other retrospective database study of 11072 patients by Guillet et al.  As the reviewers point out the study by Terrin while prospective did not employ the use of multiple regression to adjust for confounders while the larger study here did.  In the end the risk of NEC with the use of acid suppression was 1.78 (1.4 – 2.27; p<0.00001). What do we do with such evidence? I can say this much.  Although small in number, the studies that are available will make it very difficult to ever have a gold standard RCT done on this topic.  This scant amount of evidence, backed by the biologic plausibility that raising the gastric pH will lead to bacterial overgrowth and potential aspiration of such contents provides the support for the Choosing Wisely position. Why do we continue to see use of such medications though?  It is human nature I suspect that is the strongest motivator.  We care for infants and want to do our best to help them through their journey in neonatal units.  When we hear on rounds that the baby is “refluxing” which may be documented by gulping during a brady, visible spit ups during A&Bs or through auscultation hearing the contents in the pharynx we feel the need to do something.  The question invariably will be asked whether at the bedside or by the parents “Isn’t there something we can do?”. My answer to this is yes.  Wait for it to resolve on its own, especially when the premature infants are nowhere close to term.  I am not sure that there is any strong evidence to suggest treatment of reflux episodes with gastric acid suppression helps any outcomes at all and as we see from the Terrin study length of stay may be prolonged.  I am all in favour of positional changes to reduce such events but with respect to medications I would suggest we all sit on our hands and avoid writing the order for acid suppression.  Failure to do so will likely result in our hands being very busy for some infants as we write orders to manage NEC, pneumonia and bouts of sepsis.  

AllThingsNeonatal

AllThingsNeonatal

 

When should blood be given prior to surgery?

A 28 week preterm infant now two weeks of age develops bilious emesis and abdominal distension.  An x-ray reveals an intestinal perforation and surgery is consulted. Arrangements are made to go to the operating room for a laparotomy and due to apnea and hypotension the baby is both intubated and placed on dopamine.  The resident on service ensures that blood is available in the operating room and an hour after presentation the baby is found to have a HgB of 102 g/L with a HcT of 35%. I don’t know about you but if I am then asked whether we should give blood now or in the OR I might say at that level with the degree of illness to give blood or I might say wait till the baby gets to the OR if perhaps they were fairly stable on the support.  You the reader might be more convinced of your actions but if I manipulate the numbers a little bit to say 105 g/l and HcT of 37% might you feel different?  What about 110 g/L and 39%?  You get the picture.  Where is that magic cutoff where we say prior to an OR that a baby needs blood or can wait?  In our heads of course we conjure up the equation for delivery of O2 to tissues Cardiac output X (1.39 X HgB X Sat +0.003*pO2) and realize that the delivery of oxygen is critically dependent on HgB level but how much is enough?  The truth is I don’t think we really know but we do a good job of coming up with some markers such as lactate or more recently near infrared spectroscopy to give us an idea of how much O2 the tissues are seeing. How much HgB does a baby need before surgery? Although this may seem like something that is well known, the truth is we don’t really know.  We may have an inkling though based on a recent paper entitled Association of Preoperative Anemia With Postoperative Mortality in Neonates by S. Goobie et al. They performed a retrospective review of a US surgical quality database to examine mortality after operations and identified 2764 neonates out of 114395 children who underwent surgery.  Similar to previous studies the neonatal postoperative mortality rate was higher at 3.4% than the rest of childhood at 0.6%.  When examining the effect of low hematocrit prior to surgery they further identified a cutoff of 40% below which the risk of mortality increased.  Of the neonatal group that survived 31% had a preop hematocrit of 40% or more while of those who died 72% had a hematocrit < 40%. Hematocrit was not the only factor predicting mortality though as ASA class 3 – 5 (an anesthesiology risk score where these scores indicate severe systemic disease or emergencies), weight < 2 kg, preoperative ventilation and inotropic support.  Put simply, sicker small patients have worse outcomes which I suppose should not surprise anyone. So how do we interpret this data? One important point that this article does not control for is the specific type of condition that the patient had.  Clearly all conditions of the newborn are not the same as for example an umbilical flap closure of gastroschisis compared to fulminant necrotizing enterocolitis.  The authors do try and control somewhat for this by demonstrating that the ASA categories demonstrate if you have severe systemic disease you are worse off but where does this leave the hematocrit?  The other possible explanation is that the anemia is simply a reflection of the critical nature of the patient.  Sicker patients are more likely to be anemic and also patients who present later are as well.  A baby needing a colostomy for a bowel obstruction diagnosed after birth is likely to have low risk of mortality and also have a normal HgB.  Contrast this with the baby who develops NEC at 3 weeks of age who is likely anemic or close to being so when they present and in the presence of shock and DIC becomes even more so.    Is the low HcT just a proxy for severity of disease? I suspect for the otherwise well infant who is electively intubated for surgery, having a hematocrit alone below 40% is not dangerous.  What do we do though with the baby who is on inotropes for example.  To truly answer this question we need a randomized controlled trial comparing transfusing patients with a hematocrit below 40% vs choosing a higher threshold of say 50% to say whether it makes a difference.  That doesn’t help us though in the here and now.  This gold standard for studies won’t tell me what to do for a few years but right now I have to decide what to do for a patient in front of me. Not everyone may agree with me on this but I think in such circumstances I would transfuse based on this publications results.  To the naysayers out there I would suggest that whether I choose to give the blood or not before the operation, they will be getting it after they enter the OR.  Why not give them a boost before they undergo the knife?  It is not a question of whether they will be transfused or not it is a difference in time. If I have the chance I will “top them up” but what will you do?  

AllThingsNeonatal

AllThingsNeonatal

 

What if we criminalized drug use in pregnancy?

I don't know if you missed it but I did until tonight.  We don't have this in Canada but there have been some US states that have been doing so for the past while.  You may find the following link very interesting that explains the positions of each state in regards to drug use in pregnancy. The intentions were good to protect the unborn child but the consequences to mother's who tested positive were of great concern. As this article from March 4th indicates the practice has been ongoing in Tennessee for at least a year and a pilot project was planned for Indiana this year.  According to the article the situation in Tennessee came with some significant risk to the mother if found to have a positive screen. "Lawmakers in Tennessee last year increased drug screenings of expectant mothers and passed a law allowing prosecutors to charge a woman with aggravated assault against her unborn baby if she was caught using illicit drugs. The penalty is up to 15 years in prison." The law may seem harsh and in my eyes is but it came in response to the tidal wave of drug addiction and neonatal withdrawal in the US as was identified in the article from the NEJM in 2015 entitled Increasing Incidence of the Neonatal Abstinence Syndrome in U.S. Neonatal ICUs.  The impact on neonatal ICUs in the US can be seen in the following graphs which demonstrate not only the phenomenal rise in the incidence of the problem but in the second graph the gradually prolonging length of stay that these patients face.  Aside from the societal issues these families face and the problems their infants experience, the swelling volume of patients NICUs have to contend with are quite simply overwhelming resources with time. Although I reside in Canada, it is the trend shown that likely motivated some states to adopt such a draconian approach to these mother-infant dyads. There are so many questions that would arise from such an approach.  What if a mother refuses testing as is the option in Indiana.  Would Child and Family services be called simply on the suspicion? What if a mother received prescription opioids for chronic back pain or used an old prescription in the days before she was tested after a fall to ease her pain? Then there is the Sharapova situation where a mother could conceivably take a medication that she is unaware is on a list of "banned substances".  What about Naturopathic or herbal supplements that might test positive? Then what about false positive tests?   The ramifications of any of the above situations on the family unit could be devastating.  Interestingly this year the courts in Indiana passed a law that prevents health care providers from releasing the results of such toxicology screens to police without a court order so indeed there would need to be suspicion.  In the end though is it right? Tennessee Sings a New Tune As surprised as I was to hear about the situation in Tennessee just now I was equally surprised to come across a U.S. Supreme Court ruling handed down March 21st, 2001 that has ruled that subjecting mothers to such testing in hospitals is unconstitutional.  This may disclose my ignorance of US law but I would have thought if the US Supreme Court says you cannot do something the states would follow along but at least in Tennessee that was not the case...until now. March 23rd the law in Tennessee is changing as the state has chosen not to renew the legislation after a two year trial period saw about 100 women arrested.  For more information on this decision see Assault Charges for Pregnant Drug Users Set to Stop in Tennessee. Where do we possibly go from here? I found this whole storyline shocking but I am taking some solace in knowing that this was a very limited experiment in one state.  Neonatal abstinence is a problem and a big one at that.  Criminalizing mothers though is not an effective solution and to me the solution to this problem will need to involve a preventative approach rather than one of punishment.  A first step in the right direction will be to stem the tide of liberal use of prescription opioids in pregnancy as was suggested in the BMJ news release in January of this year.  In the end if we as medical practitioners are freely prescribing such medications to the mothers we care for perhaps we should look in the mirror when pointing fingers to determine fault.  So many of the mothers and the infants we care for may well be victims of a medical establishment that has not done enough to prevent the problem. .

AllThingsNeonatal

AllThingsNeonatal

 

What do body builders and preemies have in common?

A strange title perhaps but not when you consider that both are in much need of increasing muscle mass.  Muscle takes protein to build and a global market exists in the adult world to achieve this goal.  For the preterm infant human milk fortifiers provide added protein and when the amounts remain suboptimal there are either powdered or liquid protein fortifiers that can be added to the strategy to achieve growth.  When it comes to the preterm infant we rely on nutritional science to guide us. How much is enough?  The European Society For Pediatric Gastroenterology, Hepatology and Nutrition published recommendations in 2010 based on consensus and concluded: “We therefore recommend aiming at 4.0 to 4.5 g/kg/day protein intake for infants up to 1000 g, and 3.5 to 4.0 g/kg/day for infants from 1000 to 1800 g that will meet the needs of most preterm infants. Protein intake can be reduced towards discharge if the infant’s growth pattern allows for this. The recommended range of protein intake is therefore 3.5 to 4.5 g/kg/day.” These recommendations are from six years ago though and are based on evidence that preceded their working group so one would hope that the evidence still supports such practice.  It may not be as concrete though as one would hope. Let’s Jump To 2012 Miller et al published an RCT on the subject entitled Effect of increasing protein content of human milk fortifier on growth in preterm infants born at <31 wk gestation: a randomized controlled trial.  This trial is quite relevant in that it involved 92 infants (mean GA 27-28 weeks and about 1000g on average at the start), 43 of whom received a standard amount of protein 3.6 g/kg/day vs 4.2 g/kg/d in the high protein group. This was commenced once fortification was started and carried through till discharge with energy intakes and volume of feeds being the same in both groups.  The authors used a milk analyzer to ensure consistency in the total content of nutrition given the known variability in human milk nutritional content.  The results didn’t show much to write home about.  There were no differences in weight gain or any measurements but the weight at discharge was a little higher in the high protein group.  The length of stay trended towards a higher number of days in the high protein group so that may account for some of the difference.  All in all though 3.6 or 4.2 g/kg/d of protein didn’t seem to do much to enhance growth. Now let’s jump to 2016 This past month Maas C et al published an interesting trial on protein supplementation entitled Effect of Increased Enteral Protein Intake on Growth in Human Milk-Fed Preterm Infants: A Randomized Clinical Trial.  This modern day study had an interesting question to answer.  How would growth compare if infants who were fed human milk were supplemented with one of three protein contents based on current recommendations.  The first group of 30 infants all < 32 weeks received standard protein intake of 3.5 g/kg/d while the second group of 30 were given an average intake of 4.1 g/kg/d.  The second group of 30 were divided though into an empiric group in which the protein content of maternal or donor milk was assumed to be a standard amount while the second 15 had their protein additive customized based on an analysis of the human milk being provided.  Whether the higher intake group was estimated or customized resulted in no difference in protein intake on average although variability between infants in actual intake was reduced. Importantly, energy intake was no different between the high and low groups so if any difference in growth was found it would presumably be related to the added protein. Does it make a difference? The results of this study failed to show any benefit to head circumference, length or weight between the two groups.  The authors in their discussion postulate that there is a ceiling effect when it comes to protein and I would tend to agree.  There is no question that if one removes protein from the diet an infant cannot grow as they would begin to break down muscle to survive.  At some point the minimum threshold is met and as one increases protein and energy intake desired growth rates ensue.  What this study suggests though is that there comes a point where more protein does not equal more growth.  It is possible to increase energy intakes further as well but then we run the risk of increasing adiposity in these patients. I suppose it would be a good time to express what I am not saying!  Protein is needed for the growing preterm infant so I am not jumping on the bandwagon of suggesting that we should question the use of protein fortification.  I believe though that the “ceiling” for protein use lies somewhere between 3.5 – 4 g/kg/d of protein intake.  We don’t really know if it is at 3.5, 3.7, 3.8 or 3.9 but it likely is sitting somewhere in those numbers.  It seems reasonable to me to aim for this range but follow urea (something outside of renal failure I have personally not paid much attention to).  If the urea begins rising at a higher protein intake approaching 4 g/kg/d perhaps that is the bodies way of saying enough! Lastly this study also raises a question in my mind about the utility of milk analyzers.  At least for protein content knowing precisely how much is in breastmilk may not be that important in the end.  Then again that raises the whole question of the accuracy of such devices but I imagine that could be the source of a post for another day.

AllThingsNeonatal

AllThingsNeonatal

 

Was resetting the threshold for hypoglycaemia a good thing?

In 2015 the Pediatric Endocrine Society (PES) published new recommendations for defining and managing hypoglycaemia in the newborn. A colleague of mine and I discussed the changes and came to the conclusion that the changes suggested were reasonable with some “tweaks”. The PES suggested a change from 2.6 mmol/L (47 mg/dL) at 48 hours of age as a minimum goal glucose to 3.3 mmol/L (60 mg/dL) as the big change in approach. The arguments for this change was largely based on data from normal preterm and term infants achieving the higher levels by 48-72 hours and some neuroendocrine data suggesting physiologically, the body would respond with counter regulatory hormones below 3.3 mmol/L. As it turned out, we were “early adopters” as we learned in the coming year that no other centre in Canada had paid much attention to the recommendations. The inertia to change was likely centred around a few main arguments. 1. How compelling was the data really that a target of 2.6 and above was a bad idea? 2. Fear! Would using a higher threshold result in many “well newborns” being admitted to NICU for treatment when they were really just experiencing a prolonged period of transitional hypoglycaemia. 3. If its not broken don’t fix it. In other word, people were resistant to change itself after everyone was finally accustomed to algorithms for treatment of hypoglcyemia in their own centres. What effect did it actually have? My colleagues along with one of our residents decided to do a before and after retrospective comparison to answer a few questions since we embraced this change. Their answers to what effect the change brought about are interesting and therefore at least a in my opinion worth sharing. If any of you are wondering what effect such change might have in your centre then read on! Skovrlj R, Marks S and C. Rodd published Frequency and etiology of persistent neonatal hypoglycemia using the more stringent 2015 Pediatric Endocrine Society hypoglycemia guidelines. They had a total of 58 infants in the study with a primary outcome being the number of endocrine consults before and after the change in practice. Not surprisingly as the graph demonstrates the number went up.  Once the protocol was in place we went from arbitrary consults to mandatory so these results are not surprising.  What is surprising though is that the median critical plasma glucose was 2.2 mmol/L, with no significant difference pre or post (2.0 mmol/L pre versus 2.6 mmol/L post, P=0.4)  Ninety percent of the infants who were hypoglycemic beyond 72 hours of age were so in the first 72 hours.  Of these infants, 90% were diagnosed with hyperinsulinemia.  What this tells us is that those who are going to go on to have persistent hypoglycemia will demonstrate similar blood sugars whether you use the cutoff of 2.6 or 3.3 mmol/L.  You will just catch more that present a little later using the higher thresholds.  How would these kids do at home if discharged with true hyperinsulinemia that wasn’t treated?  I can only speculate but that can’t be good for the brain… Now comes the really interesting part! Of the total infants in the study,  thirteen infants or 40% had plasma glucose values of 2.6 to 3.2 mmol/L at the time of consultation after November 2015.  Think about that for a moment.  None of these infants would have been identified using the old protocol.  Nine of these infants went on to require treatment with diazoxide for persistent hyperinsulinemia. All of these infants would have been missed using the old protocol.  You might ask at this point “what about the admission rate?”. Curiously an internal audit of our admission rates for hypoglycemia during this period identified a decline in our admission rates.  Concurrent with this change we also rolled out the use of dextrose gels so the reduction may have been due to that as one would have expected admission rates to rise otherwise.  The other thing you might ask is whether in the end we did the right thing as who says that a plasma blood glucose threshold of 3.3 mmol/L is better than using the tried and true 2.6 mmol/L cutoff? While I don’t have a definitive answer to give you to that last question, I can leave you with something provocative to chew on.  In the sugar babies study the goal glucose threshold for the first 7 days of life was 2.6 mmol/L.  This cohort has been followed up and I have written about these studies before in Dextrose gel for hypoglycemia. Safe in the long run? One of the curious findings in this study was in the following table. Although the majority of the babies in the study had only mild neurosensory impairment detectable using sophisticated testing the question is why should so many have had anything at all? I have often wondered whether the goal of keeping the blood sugar above 2.6 mmol/L as opposed to a higher level of say 3.3 mmol/L may be at play.  Time will tell if we begin to see centres adopt the higher thresholds and then follow these children up.  I don’t know about you but a child with a blood sugar of 2.7 mmol/L at 5 or 6 days of age would raise my eyebrow.  These levels that we have used for some time seem to make sense in the first few days but for discharge something higher seems sensible.
 

Was adding placement of EKG leads to NRP a good idea after all?

It is hard to believe but it has been almost 3 years since I wrote a piece entitled A 200 year old invention that remains king of all tech in newborn resuscitation. In the post I shared a recent story of a situation in which the EKG leads told a different story that what our ears and fingers would want us to believe. The concept of the piece was that in the setting of pulseless electrical activity (where there is electrical conductance in the myocardium but lack of contraction leaves no blood flow to the body) one could pick up a signal from the EKG leads when there is in fact no pulse or perfusion to vital organs. This single experience led me to postulate that this situation may be more common than we think and the application of EKG leads routinely could lead to errors in decision making during resuscitation of the newborn. It is easy to see how that could occur when you think about the racing pulses of our own in such situations and once chest compressions start one might watch the monitor and forget when they see a heart rate of 70 BPM to check for a corresponding pulse or listen with the stethoscope. I could see for example someone stopping chest compressions and continuing to provide BVM ventilation despite no palpable pulse when they see the QRS complex clearly on the monitor. I didn’t really have much evidence to support this concern but perhaps there is a little more to present now. A Crafty Animal Study Provides The Evidence I haven’t presented many animal studies but this one is fairly simple and serves to illustrate the concern in a research model. For those of you who haven’t done animal research, my apologies in advance as you read what happened to this group of piglets. Although it may sound awful, the study has demonstrated that the concern I and others have has is real. For this study 54 newborn piglets (equivalent to 36-38 weeks GA in humans) were anesthetized and had a flow sensor surgically placed around the carotid artery.  ECG leads were placed as well and then after achieving stabilization, hypoxia was induced with an FiO2 of 0.1 and then asphyxia by disconnecting the ventilator and clamping the ETT.  By having a flow probe around the carotid artery the researchers were able to determine the point of no cardiac output and simultaneously monitor for electrical activity via the EKG leads.  Auscultation for heart sounds was performed as well. The results essentially confirm why I have been concerned with an over reliance on EKG leads.   Of the 57 piglets, 14 had asystole and no carotid flow but in 23 there was still a heart rate present on the EKG with no detectable carotid flow. This yields a sensitivity of only 37%.  Moreover, the overall accuracy of the ECG was only 56%. Meanwhile the stethoscope which I have referred to previously as the “king” in these situations had 100% sensitivity so remains deserving of that title. What do we do with such information? I think the results give us reason to pause and remember that faster isn’t always better.  Previous research has shown that signal acquisition with EKG leads is faster than with oximetry.  While a low heart rate detected quickly is helpful to know what the state of the infant is and begin the NRP pathway, we simply can’t rely on the EKG to tell us the whole story.  We work in interdisciplinary teams and need to support one another in resuscitations and provide the team with the necessary information to perform well.  The next time you are in such a situation remember that the EKG is only one part of the story and that auscultation for heart sounds and palpation of the umbilical cord for pulsation are necessary steps to demonstrate conclusively that you don’t just have a rhythm but a perfusing one. I would like to thank the Edmonton group for continuing to put out such important work in the field of resuscitation!

AllThingsNeonatal

AllThingsNeonatal

 

Walk but don’t run to reduce apnea of prematurity

Now that I have caught your attention it is only fair that I explain what I mean by such an absurd title.  If you work with preterm infants, you have dealt with apnea of prematurity.  If you have, then you also have had to manage such infants who seemingly are resistant to everything other than being ventilated.  We have all seen them.  Due to increasing events someone gives a load of methylxanthine and then starts maintenance.  After a couple days a miniload is given and the dose increased with the cycle repeating itself until nCPAP or some other non-invasive modality is started.  Finally, after admitting defeat due to persistent episodes of apnea and/or bradycardia, the patient is intubated.  This, in the absence of some other cause for apnea such as sepsis or seizures is the methylxanthine resistant preterm infant.  Seemingly no amount of treatment will amount to a reduction in events and then there is only so much that CPAP can do to help. What Next? Other strategies have been attempted to deal with such infants but sadly none have really stood the test of time.  Breathing carbon dioxide might make sense as we humans tend to breathe quickly to excrete rising CO2 but in neonates while such a response occurs it does not last and is inferior to methylxanthine therapy.  Doxapram was used in the past and continues to be used in Europe but concerns over impacts on neurodevelopment have been a barrier in North America for some time.  Stimulating infants through a variety of methods has been tried but the downside to using for example a vibrating mattress is that sleep could be interfered with and there are no doubt impacts to the preterm infant of having weeks of disturbed sleep states on developmental outcomes. What if we could make our preterm infants walk? This of course isn’t physically practical but two researchers have explored this question by using vibration at proprioceptors in the hand and foot.  Such stimulation may simulate limb movement and trick the brain into thinking that the infant is walking or running.  Why would we do this?.  It has been known for 40 years that movement of limbs as in walking triggers a respiratory stimulatory effect by increasing breathing.  This has been shown in adults but not in infants but this possibility is the basis of a study carried out in California entitled Neuromodulation of Limb Propriceptive Afferents Decreases Apnea of Prematurity and Accompanying Intermittent Hypoxia and Bradycardia.  This was a small pilot study enrolling 19 patients of which 15 had analyzable data.  The design was that of alternating individual preterm infants born between 23 – 35 weeks to receive either vibratory stimulation or nothing and measuring the number and extent of apnea and bradycardia over these four periods.  In essence this was a proof of concept study. The stimulation is likened to that felt when a cell phone vibrates as this was the size of device used to generate the sensation.  The authors note that during the periods of stimulation the nurses noted no signs of any infant waking or seeming to be disturbed by the sensation.  The results were quite interesting especially when noting that 80% of the infants were on caffeine during the time of the study so these were mostly babies already receiving some degree of stimulation Should we run out and buy these? The stimulation does appear to work but with any small study we need to be careful in saying with confidence that this would work in a much larger sample.  Could there have been some other factor affecting the results?  Absolutely but the results nonetheless do raise an eyebrow.  One thing missing from the study that I hope would be done in a larger sample next time is an EEG.  The authors are speculating that by placing the vibration over the hand and foot the brain is perceiving the signal as limb movement but it would have been nice to see the motor areas of the brain “lighting up” during such stimulation.  As we don’t have that I am left wondering if the vibration was simply a form of mild noxious stimulus that led to these results.  Of course in the end maybe it doesn’t matter if the results show improvement but an EEG could also inform us about the quality of sleep rather than relying on nursing report of how they thought the baby tolerated the stimulus.  I know our nursing colleagues are phenomenal but can they really discern between quiet and active sleep cycles?  Maybe some but I would guess most not.  There will also be the naysayers out there that will question safety.  While we may not perceive a gentle vibration as being harmful, with such a small number of patients can we say that with certainty?  I am on the side of believing it is probably insignificant but then again I tend to see the world through rose coloured glasses. Regardless of the filter through which you view this world of ours I have to say I am quite excited to see where this goes.  Now we just have to figure out how to manage the “real estate” of our infant’s skin as we keep adding more and more probes that need a hand or a foot for placement!

AllThingsNeonatal

AllThingsNeonatal

 

Using the printed word to treat apnea of prematurity

As the saying goes, sometimes less is more.  In recent years there has been a move towards this in NICUs as the benefits of family centred care have been shown time and time again.  Hi tech and new pharmaceutical products continue to develop but getting back to the basics of skin to skin care for many hours and presence of families as an integral team member have become promoted for their benefits.  The fetus is a captive audience and hears the mother's heart beat and voice after the development of hearing sometime between 24-26 weeks gestational age.  This is a normal part of development so it would stand to reason that there could be a benefit to hearing this voice especially after hearing has developed and the fetus has grown accustomed to it.  Hospital including my own have developed reading programs for our patients and some companies have developed speakers in isolettes designed to limit the maximum decibel to 45 but allowing parents to make recordings of their voices.  Music may be played through these speakers as well but today we will focus on the benefit of voice. Could reading to your baby reduce apnea of prematurity? This is the question that Scala M et al sought to answer in their paper Effect of reading to preterm infants on measures of cardiorespiratory stability in the neonatal intensive care unit.  This was a small prospective study of the impact of parental reading on cardiorespiratory stability in preterm NICU infants. Eighteen patients were enrolled who were born between 23-31 weeks gestation.  The study was carried out when the babies were between 8-56 days old at a mean postnatal age of 30 weeks. Each patient served as their own control by comparing episodes of oxygen desaturation to <85% during pre-reading periods (3 hours and 1 hour before) to during reading and then 1 hour post reading.  Parents were asked to read or create a recording lasting a minimum of 15 min but up to 60 min of recorded reading.  The parents were offered a standard set of books that had a certain rhythm to the text or could choose their own.  Recorded reading was played for infants up to twice per day by the bedside nurse. While it was small in number of patients the authors point out that the total exposure was large with 1934 min of parental bedside reading analyzed (range 30–270 min per infant, mean 123, median 94 min).  Patients could be on respiratory support ranging from ventilators to nasal cannulae. Was it effective? It certainly was. I should mention though that the authors excluded one patient in the end when it was found that they failed their hearing screen.  Arguably, since the infant could not have benefited from the intervention effect this makes sense to me.  As shown from table 3 there was a statistical reduction in desaturation events during the reading period which was sustained in terms of a downward trend for one hour after the intervention was completed.  In case you are asking was the difference related to oxygen use the answer is no.  There was no difference in the amount of oxygen provided to patients.  While the events were not eliminated they were certainly reduced.  The other point worth mentioning is that there appears to be a difference between live (through open portholes) vs prerecorded reading (through a speaker in the isolette). Now for a little controversy Does source of the reading matter?  The authors found that maternal had a greater effect than paternal voice.  As a father who has read countless books to his children I found this a little off-putting.  As a more objective critic though I suppose I can buy the biologic plausibility here.  I suspect there is an independent effect of voice having a positive impact on development.  If we buy the argument though that the voice that the fetus has most been accustomed to is the mothers, then the findings of an augmented effect of the maternal voice over fathers makes some sense.  I will have to put my ego aside for a moment and acknowledge that the effect here could be real. There will no doubt need to be larger studies done to drill down a number of questions such as what is the ideal type of reading, duration, rhythmic or non etc but this is a great start.  I also think this falls into the category of "could this really be a bad thing?".  Even if in the end no benefit is shown to this type of intervention, the potential for family bonding with their preterm infant alone I think is cause for embracing this intervention. Lastly, with the move to single patient rooms there is one study that demonstrated the isolation encountered from infrequent contact with their newborn can have a long lasting effect on development.  The article by Pineda RG et al Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. had a mean parental visitation of 19 +/- 19 hours a week or a little over 2 hours a day but with a very large standard deviation meaning many infants had almost no visitation.  The message here is that while quiet is good for infant development, too much can be a bad thing.  Maybe live reading or even recordings are a way around that.

AllThingsNeonatal

AllThingsNeonatal

 

Towards better and safer intubation

We are the victims of our own success.  Over the last decade, the approach to respiratory support of the newborn with respiratory distress has tiled heavily towards non-invasive support with CPAP.  In our own units when we look at our year over year rates of ventilation hours they are decreasing and those for CPAP dramatically increasing.  Make no mistake about it, this is a good thing.  Seeming to overlap this trend is a large increase in demand by learners as we see the numbers of residents, subspecialty trainees, nurse practitioners on the rise.  The combined effect is a reduction is the experience trainees can possibly hope to obtain when these rarer and rarer opportunities arise.  The result of all of this is that at least by my eyes (although we haven’t documented it) the number of attempts for intubations seems to be much higher than it once was.  It is not uncommon to see 3-4 attempts or sometimes more whereas in days gone by 1-2 attempts was the norm.  We do our best to deal with these shortages using simulation as an example but nothing quite compares to dealing with the real thing even if it comes close. The Less Practice You Get The More Adverse Events You Can Expect This is just the way it is.  Perfect practice makes perfect and it has been well documented that intubations can lead to many complications such as desaturation, bradycardia, bleeding, airway edema from multiple attempts and a host of other issues.  Hatch and colleagues first described their experience with 162 intubations in which they found adverse events in 107 (39%) with 35% being classified as non-severe and severe events in 8.8%.  Not surprisingly one of the factors associated with adverse events was the need for multiple intubation attempts.  Based on this initial experience they determined that as a unit they could do better and soon after undertook a series of PDSA Quality Improvement cycles to see if they could reduce these events and that they did.  What follows are the lessons learned from their QI project and it is my hope that some or all of these ideas may help others elsewhere who are experiencing similar frustrating rates. Steps To A Better Intubation The findings of their QI study were published last month in Pediatrics in their paper Interventions to Improve Patient Safety During Intubation in the Neonatal Intensive Care Unit.  The strategies they used were threefold. Standardized checklist before intubation – This used a “do-confirm” approach in which the individuals on the team “do” what they need to prepare and then confirm with the group that they are done.  An example might be an RRT who states “I have three sizes of ETT ready with a stylet already inserted, surfactant is thawed and the ventilator is set with settings of … if needed etc”.  Another critical part of the checklist includes ensuring that everyone knows in advance their roles and who is responsible for what. Premedication algorithm – Prior to this project the use of premedication was inconsistent, drug selection was highly varied and muscle relaxation was almost non-existent.  The team identified from the literature that a standard approach to premedication had been associated with reductions in adverse events in other centres so adopted the same here using fentanyl with atropine if preterm and muscle relaxation optional. Computerized order set for intubation – interestingly the order set included prompts to nursing to make sure intervention 1 and 2 were done as well. The results of there before and after comparison were numerous but I have summarized some of the more important findings in the table below. Outcome Period 1 (273 intubations) Period 2 (236 intubations) p Any AE 46.2% 36.0% 0.02 Severe events 8.8% 6.4% 0.04 Bradycardia 24.2% 9.3% <0.001 Hypoxemia 44.3% 33.1% 0.006 Esophageal intubation 21.3% 14.4% 0.05 # attempts 2 2 NS <10 intubations experience 15.1% 25.5% 0.001 The median number of attempts were no different but the level of experience in the second epoch was less.  One would expect with less experienced intubators this would predict higher risk for adverse events.  What was seen though was a statistically significant reduction in many important outcomes as listed in the table.  I can only speculate what the results might have been if the experience of the intubators was similar in the first and second periods but I suspect the results would have been even more impressive.  The results seem even more impressive in fact when you factor in that the checklist was used despite all of the education and order set 73% of the time and muscle relaxation was hardly used at all.  I believe though what can be taken out of these results is that taking the time to plan each intubation and having a standard approach so that all staff practice in the same way reaps benefits.  If you already do this in your unit then congratulations but if you don’t then perhaps this may be of use to you! What About Intubation For INSURE? We are in the process of looking in our own centre at the utility of providing premedication when planning to give surfactant via the INSURE technique.  I couldn’t help but notice that this paper also looked at that very issue.  Their findings in 17 patients all of whom were provided premedication were that only one could not be extubated right after surfactant.  The one who was not extubated however was kept intubated for several hours without any reasoning provided in the records so it may well be that the infant could have been electively kept ventilated when they may have indeed been ready for extubation.  The lesson here though is that we likely do not need to exclude such patients from premedication it will reduce the likelihood of complications without prolonging the time receiving positive pressure ventilation. Whatever your thoughts may be at this time one of the first questions you should ask is what is our local rate of complications?  If you don’t know then do an audit and find out.  Whatever the result, shouldn’t we all strive to lower that number if we can?

AllThingsNeonatal

AllThingsNeonatal

 

Too Small To Extubate?

This is something that I continue to hear from time to time even in 2016 and I imagine I will continue to hear rumblings about this in 2017.  Certainly, there are physical limitations when a baby is born at less than 500g.  Have you tried fitting a mask to deliver NIPPV or CPAP to a baby this small?  I have and it didn’t work.  The mask was simply too big to provide a seal and while I am all for INSURE and emerging minimally invasive surfactant techniques they still require transitioning to a form of non invasive positive pressure ventilation to allow extubation success.  Certainly though above the 500g barrier it may be that the greatest impediment to extubation is our own bias. If this sounds a little familiar it is because I have written about this topic before Extubation failure is not a failure itself.  The reason for bringing the topic up again though is that aside from needing to address our own fears there is a new systematic review that acts somewhat of a how to guide to optimizing your chance at a successful extubation.  The review encompasses findings from 50 studies with successful extubation as defined as no need for reintubation within 7 days.  Before getting into the details of the optimal approach it is worth reminding people that failure of extubation in even our smallest babies is not a failure itself.  Such babies who “fail” up to 5 times do not suffer any long term consequences and may wind up with less risk of BPD than those who are kept intubated due to fear of failure. So After Reviewing The Evidence What Are the Recipes To Success? Continuous positive airway pressure Reduced extubation failure in comparison with head-box oxygen (risk ratio [RR], 0.59;95%CI, 0.48-0.72; number needed to treat [NNT], 6; 95%CI, 3-9). If you aren’t extubating to nCPAP then chances are I would bet your success rates are quite low.  Head boxes certainly can tell you how much O2 a patient requires but do nothing to help inflate alveolar spaces. Nasal intermittent positive pressure ventilation (NIPPV) vs. CPAP Higher prevention of extubation failure (RR, 0.70; 95%CI, 0.60-0.81; NNT, 8; 95%CI, 5-13).  This one is of particular interest to me.  The evidence has suggested this for some time and with a number needed to treat of 8 it would seem illogical to use anything else at the outset, especially in the smallest of infants.  The issue here though is that at least here in Canada the options for delivering such NIPPV are currently quite limited.  At the moment we are limited to use of ventilator NIPPV and the stability of the CPAP offered from such devices and the imposed work of breathing are most likely inferior to that found in variable flow devices which at this point have been pulled from the market. See Comparison of nasal continuous positive airway pressure delivered by seven ventilators using simulated neonatal breathing.  What I hope 2017 brings is a comparison of the effectiveness of extubation success using new variable flow devices capable of generating previously unreachable CPAP pressures above 9 or 10 cm H2O.  Will these attain similar effectiveness to the NIPPV devices? Methylxanthines reduced extubation failure (RR, 0.48; 95%CI, 0.32-0.71; NNT, 4; 95%CI, 2-7) compared with placebo or no treatment. Ok, pretty much anyone working in Neonatology would assume this but what really is at the crux of the discussion in 2016 and beyond is “what dose?” It has been pretty clear during my career thus far that there are some preterm infants that just don’t respond to conventional doses of caffeine base from 2.5  – 5 mg/kg/d.  In our own units we have increased doses to 6, 7 or 8 mg/kg/d to achieve some degree of respiratory stimulation and usually been limited by tachycardia in determining how high we can go.  Given the sparse literature regarding safety on this topic we are relegated to ask ourselves what is worse, leaving a baby on a ventilator or using higher doses of caffeine? I have given some thoughts on this before as well Are we overdosing preemies on caffeine?   Doxapram did not aid successful extubation (RR, 0.80; 95% CI, 0.22-2.97). For selfish reasons I have to admit I was happy to see this.  We can’t access this medication very easily here in Canada so hearing that it doesn’t seem to work to enhance the likelihood of a successful extubation is somewhat of a relief. A Cautionary Note While I applaud the authors of the systematic review for performing such a thorough job I do feel the need to raise one concern with the analysis.  It is not a major concern but one that I just feel the need to mention.  Success if the studies was defined as not requiring reintubation within 7 days of extubation.  My concern is that having such a lengthy time frame leaves the possibility that the decision to reintubate had nothing to do with the patient in fact not being ready.  Seven days is a long time and much can happen in the life of a preterm infant in an NICU that triggers a reintubation.  What if a patient needed to be transferred to a different NICU and for safe air transport it was deemed safest to replace the ETT?  How many patients could have developed NEC or sepsis in the seven days? What if a PDA was being semi-electively ligated after a failed NSAID course? In the end the impact of such conditions could be minimal but I am less convinced that a patient failed extubation when up to 7 days have passed.  I would be very interested to see a similar study looking at a period of 24 or 48 hours after extubation and seeing how many stay that way.  Would the predictors of success stay the same?  Probably but I suspect the number safely extubated would rise as well. featured image from the March of Dimes

AllThingsNeonatal

AllThingsNeonatal

 

Time To Give Antenatal Steroids After 34 weeks

In April of this year the ALPS trial results were published in the New England Journal of Medicine (Antenatal Betamethasone for Women at Risk for Late Preterm Delivery) and I took the time to review the paper at the time Antenatal Steroids After 34 weeks. Believe the hype?  In the analysis I focused on an issue which was relevant at the time, being a shortage of betamethasone.  In a situation when the drug of choice is in short supply I argued that while the benefits of giving steroid to women at risk of delivery between 34 0/7 to 36 6/7 weeks was there, if I had to choose (as I did at the time) I would save the doses for those at highest risk of adverse outcome.  Since the blog post though a couple of things have come out in the literature that I believe are worth sharing as it could truly influence practice. Practice Advisory: Antenatal Corticosteroid Administration in the Late Preterm Period The American College of Obstetricians and Gynecologists, moved by the results of the ALPS trial issued the following recommendations (shortened in places). Betamethasone may be considered in women with a singleton pregnancybetween 34 0/7 and 36 6/7 weeks gestation at imminent risk of preterm birth within 7 days. Monitoring of late preterms for hypoglycemia (already being done) Do not give in the setting of chorioamnionitis. Tocolysis or delayed delivery for maternal indications should not be done in order to  to allow for administration of late preterm antenatal corticosteroids. Do not provide if the pregnancy was already exposed to antenatal corticosteroids. The exclusions above such as twins and triplets, diabetic pregnancies and previous receipt of steroids were included since the study had not included these patients.  As the ACOG states in the summary, they will be reviewing such indications in the future and providing recommendations.  I would imagine that if I were in a US based practice then this post might seem like old news since many centres would have started doing this.  Given that the readers of this blog are based in many different countries around the globe and at least in Canada this has not become commonplace I thought it would be worth the update! Antenatal corticosteroids for maturity of term or near term fetuses: systematic review and meta-analysis of randomized controlled trials I posted the abstract for this review on my Facebook page the other day and it certainly garnered a lot of interest.  Some of my readers indicated the practice is already underway. I was curious what a systematic review would reveal about the topic since the ACOG was so moved by the ALPS study in particular.  Perusing through the Society of Obstetricians and Gynecologists of Canada (SOGC) I can’t find any commentary on this topic and certainly there are no new clinical practice guidelines since the ALPS study landed on my desktop. Here are the pooled results from 6 trials: Lower risk of RDS (relative risk 0.74, 95% confidence interval 0.61 to 0.91) Mild RDS (0.67, 0.46 to 0.96) Moderate RDS (0.39, 0.18 to 0.89) Severe RDS (0.55, 0.33 to 0.91) Transient tachypnea of the newborn (0.56, 0.37 to 0.86) Shorter stay on a neonatal intensive care unit (−7.64 days, −7.65 to −7.64) So across the board patients who receive antenatal steroids after 34 weeks still continue to see a benefit but looked at a different way the real benefit of the intervention is easier to see and that is through looking at the number needed to treat (NNT).  For those of you who are not familiar with this analysis, this looks at how many patients one would need to treat in order to avoid the outcome in 1 patient. For the outcomes above as an example the NNT for RDS overall is about 59 while for TTN 31 patients.  Severe RDS which is less common after 34 weeks you might expect to require more patients to treat to help 1 avoid the outcome and you would be correct.  That number is 118 patients.  It is interesting to look at the impact of steroids in pregnancies below 34 weeks (taken from the Cochrane review on the subject) as the NNT there is 23!  If you were to break these benefits down from 23-27 weeks though where the risk of RDS is quite high the NNT would be even lower.  Steroids help, no question to reduce neonatal complications but as you can see even when there is a reduction in risk for various outcomes, the number of women you need to treat to get one good outcome is quite different. Some Discussion With Obstetrics Is Needed Here As you read through this post you may find yourself saying “Who cares? if there is a benefit at all most moms would say give me the steroids!”  The issue here has to do with long term outcome.  To put it simply, we don’t know for this type of patient.  We know clearly that for patients at high risk of adverse outcomes eg. 24 week infant, the reduction in risks of infection, NEC, PDA, BPD etc from receiving antenatal steroids translates into many long term benefits.  What about the patient who say is 35 weeks and would have none of those risks?  Yes we are avoiding some short term outcomes that let’s be honest can be scary for a new parent but what are we trading  this benefit for.  The concern comes from what we know about steroids impact on the developing brain.  Steroids lead to a developmental arrest but in very preterm infants there is no doubt that the protective effect on all of these other outcomes more than offsets whatever impact there is there.  Incidentally I wrote about this once before and the section of interest appears at the end of the relevant post Not just for preemies anymore? Antenatal steroids for elective c-sections at term.  In the absence of these other conditions could there be a long term impact in babies 34 – 36 6/7?  My suspicion is that the answer is no but discussion is needed here especially in the absence of an endorsement by our Canadian SOGC.  Having said all that I expect the future will indeed see an expansion of the program but then I do hope that someone takes the time to follow such children up so we have the answer once and for all.

AllThingsNeonatal

AllThingsNeonatal

 

Time for the "cath urine" to go!

It is one of the first things that a medical student pledges to do; that is to do no harm. We are a fearful lot, wanting to do what is best for our patients while minimizing any pain and suffering along the way. This is an admirable goal and one which I would hope all practitioners would strive to excel at. There are times however when we can inadvertently cause more harm than good when we try to avoid what we perceive is the greater harm.
This is the case when it comes to collecting a sample of urine for culture as part of a full septic workup. If you ask most healthcare providers they will freely acknowledge that the gold standard for determining whether an infant has a UTI is a supra pubic aspirate (SPA). We so rarely do them these days however due to a whole host of reasons. Problems with collection include the timing and accuracy of needle placement both of which may often lead to an empty tap.  Secondly after a number of missed attempts and a crying infant who appears to be in pain it is understandable why bedside nurses may become frustrated with the entire experience and urge the person performing such procedures to settle on a bladder catheterization (BC) to obtain the specimen. The Study That Compares BC and SPA Head to Head A recent Turkish study by Eliacik K et al published A Comparison of Bladder Catheterization and Suprapubic Aspiration Methods for Urine Sample Collection From Infants With a Suspected Urinary Tract Infection and should give us all cause for concern.  The authors performed SPA on 83 infants under 12 months with a positive urine culture by BC but who had not yet started antibiotics.  The outcome of interest was both the comparison with the culture result and to see if urinalysis from the BC could increase the strength of the information gleaned from a BC. All in all the BC performed quite poorly when compared to the gold standard.  The false positive rate compared to SPA was 71.1%! That is to say that only 28.9% of SPA samples were positive compared to BC.  Similarly urinalysis sensitivity and specificity from BC were 66.7% (95% CI, 44.68% to 84.33%) and 93.22% (95% CI, 83.53% to 98.08%), respectively.  This means that only 2/3 of the time was the urinalysis abnormal on a BC in the presence of a true UTI.  Somewhat reassuring is that when there really was no UTI the urinalysis was mostly negative but in almost 1/10 patients it would not by itself rule out a UTI. What Is The Harm in Continuing BC Instead of SPA? When we try to avoid the perceived painful experience of a SPA we are going to wind up treating a large number of patients for a presumed UTI who don't have one.  The harm in this is the exposure of such infants to prolonged courses of antibiotics which has been a subject discussed many times over on this site.  We put our patients at risk of antibiotic resistance and shifts in the gut microbiome which in the case of the preterm infant puts them at risk of necrotizing enterocolitis.  There are many other concerns with prolonging antibiotics but these few should be reason enough to strive for accuracy in obtaining the right specimen in the right way.  Putting it in a slightly different perspective, would you settle for an alternative test to a lumbar puncture which claimed to miss 1 in 10 cases and also found meningitis where there was none 71.1% of the time?! A Way Forward - A Recipe For Success As the saying goes, measure twice and cut once.  With the use of bedside ultrasound there should be no need to guess as to whether the bladder is full or not.  Secondly the placement of the needle should no longer need to rely on landmarking but actually seeing where the best place for needle placement is.  Assessing the bladder by ultrasound is easy and is already employed at the bedside by nurses in many areas of the hospital.  There should no longer be a reason for the empty tap as the practitioner can be called when the baby is ready as evidenced by a good amount of urine in the bladder. Given that we have some time to do the blood culture and LP, while we wait for the SPA to be done either sucrose in the premature infant or IV analgesic may be given for the SPA while in the term or older infant there is an opportunity to put a topical analgesic cream over the site.  There really is little need for pain to factor into this any longer. Ask any health care provider and they will tell you they want to do the best they can for their patient.  This study shows us that performing a BC is failing to meet that goal.  We need to change our ways and return to the practice of the SPA but this time we have to get it right.

AllThingsNeonatal

AllThingsNeonatal

 

This Vitamin Could Save A Babies Life

It has been a few months now that I have been serving as Chair of the Fetus and Newborn Committee for the Canadian Pediatric Society. Certain statements that we release resonate strongly with me and the one just released this week is certainly one of them. Guidelines for vitamin K prophylaxis in newborns is an important statement about a condition that thankfully so few people ever experience.  To read the statement on the CPS website click here. Similar story to vaccinations Prior to the American Academy of Pediatrics in 1961 proclaiming that all newborns should receive IM Vitamin K at birth the incidence of Vitamin K deficient bleeding was 0.25 – 1.7%. Think about that for a moment. A new parent could expect that 1/100 babies roughly might have intestinal bleeding or worse an intracranial hemorrhage due to an insufficient amount of vitamin K levels in the newborn. The types of bleeding could be categorized into three different time epochs. Early onset (occurring in the first 24 hours post-birth), classic (occurring at days 2 to 7) and late onset (at 2 to 12 weeks and up to 6 months of age). With a rate that high detractors of providing Vitamin K at birth would say “why should we give it; I haven’t heard of any baby getting such bleeding?” Looking at it another way though, why don’t you see congenital rubella or kids with measles much these days? It’s due to vaccination. Thankfully as a Neonatologist, I don’t see Vitamin K deficient bleeding since most parents provide Vitamin K to their babies at birth.  If you went back to the era prior to 1961 when widespread supplementation of Vitamin K began in the US, I imagine it would not have been too uncommon to hear about a baby who had bleeding issues after birth.  Just because we don’t hear about German Measles much anymore doesn’t mean the virus causing it doesn’t still exist! How Effective is Vitamin K? How effective is Vitamin K administration at birth in preventing hemorrhagic disease of the newborn (HDNB)? Studies estimate an incidence of 0.25 per 100000 live births or 1 in 400000 babies vs the 1/100 risk without any vitamin K. That is one effective intervention! At this point I would ask those families that are still concerned about giving Vitamin K to their infants if this is a risk they can accept? If they refuse Vitamin K and there is a significant bleed how will they react? The Change in this CPS Statement From the Past In the last statement on Vitamin K, the authors suggested that the oral route was a reasonable option. Instead of giving 1 mg of Vitamin K IM one would dose it as 2 mg orally and then repeat at 2-4 weeks and then 6-8 weeks. In looking at the effectiveness though it is worth noting that while we can assure that families will get the first dose, as with any medication that needs repeat dosing there is the risk of forgetfulness leading to missed dosing down the road. In fact when the authors looked at the risk of late HDNB they found the following “The relative risk for VKDB, when comparing PO versus IM vitamin K administration in these two studies, was 28.75 (95% CI 1.64 to 503.45) and 5.97 (95% CI 0.54 to 65.82), respectively [19][20].” The outcome of course remains rare but the risk based on two studies was almost 30 times higher than if IM dosing was given. On this basis IM is recommended. Having said all this I recognize that despite all this information, some families will choose for a number of reasons to still opt for the oral dose. As the statement suggests we need to encourage such use when a family refuses IM vitamin K. The 30 fold risk compared to IM administration is magnitudes lower than the approximate 1/100 risk of giving nothing at all! In the end I believe that one case of intracranial hemorrhage from inadequate vitamin K is too much. This one vitamin indeed could save a life.

AllThingsNeonatal

AllThingsNeonatal

 

The Rugged Individualist Neonatal Blogger

Rather excited this week as Biomed Central picked up a blog post that I wrote on social media.  The post is found here.  It is based though on a larger version that I have included below and really delves into the impact of social media and how one uses it.  A big thank you to Kristy Wittmeier for all of her help in writing the post. Original Piece I read with great interest the article by Campbell et al entitled Social media use by physicians: a qualitative study of the new frontier of medicine.  The study interviewed 17 physician users of social media of which only one writer of a blog responded, but then declined to participate.  The four themes that emerged of Rugged Individualism, Uncertainty, Social Media as Media and Time Constraints certainly resonate with me as a blogger who also happens to be a Pediatrician but more specifically a Neonatologist.  The first theme truly resonates with me as I think back over the journey that has taken me to where I am now.  We in the medical social media world are certainly learning as we go.  Without clear paths drawn for us we explore and contemplate how we will make a positive difference far beyond the reach of the typical physician in a clinic, hospital or local community.  The commentary that follows explores the journey that I have taken with social media; engaging in largely unpaid work to bring information to others using these forums. My own story as a Neonatal Blogger began in 2015 when my Minecraft-obsessed son asked me to help him start a blog about Minecraft.  Two very poorly read posts started my foray into blogging using WordPress as my blogging forum.  Around the same time, our family acquired a puppy and despite our best efforts over the next 18 months this new addition woke me between 4 – 5 AM daily.  After being awoken one morning at 4 AM I read an article on NICU size as it relates to outcomes and had a marked reaction to the conclusions of the paper.  On a whim on this early February morning, I chose to set up my own blog site, and All Things Neonatal was born.  I would like to say that there was a master plan at the inception but it was due to a visceral reaction to a paper perhaps enhanced by irritability and fatigue that led to me choosing to put my thoughts out there. And I was hooked. A year and a half later, I have produced a total of 139 publications on the site. Knowing the benefit that I have received, and hopefully also imparted by engaging in social media as a healthcare professional has sparked my interest in encouraging others to consider doing the same. And for those interested in going beyond considering to doing, I would like to share some key learnings from my journey to inform yours.  To establish yourself in the realm of social media you need to utilize more than one platform, obtain your content in a time efficient manner and do not let your voice stay silent for too long. Harnessing the combined power of multiple social media sites When you begin blogging you come to realize that the method has its limitations in terms of reach.  As the paper suggests, the polling of social media users identifies multiple potential websites for both collecting and disseminating information (Facebook, Twitter, Tumblr, Linkedin, Google+ as examples).  Using them in combination can far enhance your reach. At the time of this writing the number of people who “follow” me on each site is quite disparate with Facebook by far leading the way in distribution power. Table 1 – Variance in impact of commonly used social media websites Site Number of Followers Facebook 11859 Twitter 921 WordPress (my primary blogging platform) 393 Also in the article, concern is raised over the lack of feedback for social media users as it pertains to to data on interaction with their postings. With Facebook one cannot determine what was done with your post but on twitterthere is some further delineation as one receives a tally of impressions, engagements and link clicks. When it comes to real metrics though, this is where the actual blogging site provides more useful data. I recommend embracing metrics, not only to understand your reach but perhaps just as importantly to give you the drive to continue your writings.  My most popular post, has received 5117 reads, meaning that this many took the time to open my blog post to hear what I had to say on the subject. If you were to share your thoughts on an article with colleagues via email, post a new guideline in an office or clinic or publish an article in a journal, how many people would actually see it?  The same information, if cited in a blog post and shared through Facebook can see a dramatic rise in exposure, along with your interpretation of the work.  The aforementioned post for example has had a reach on Facebook of 50934 people to date and was shared 58 times multiplying the distribution many fold.  If you published a journal article and were notified of such circulation I suspect you would be jubilant. How to obtain content? One of the greatest benefits to my own practice has been the necessity of using a wide net to capture potentially interesting content for my readers.  This habit facilitates the necessary practice of continuous learning through collecting articles from such sources as weekly automated pubmed searches, and various Child Health news websites. With time as your audience builds, postings on your own sites, tags on Facebook or mentions on Twitter draw your attention to content which your followers believe may be of interest to you.  Remember in most circumstances you are not being paid for these efforts and in between managing the rest of your workday and balancing the demands of a personal life this aspect of your life needs to be done in a very time efficient manner. Do Not Let Your Voice Stay Silent For Too Long If you want people to pay attention to what you are adding to the pool of knowledge, deposits must occur frequently.  Your followers are far more likely to mention you on various social media sites if they know you are likely to see and occasionally respond to their posts.  Without such a presence, the mentions, likes and shares slow, as will your growth and relevance in the social media world.  Future research should determine what the optimal frequency of posts to maximize reach would be.  I have long suspected that excessive posting may have the effect of diluting the important messages while posting too infrequently means you may be quickly forgotten.  Individuals must find the balance that works for them to keep their audience engaged while maintaining their motivation to continue the practice. What Really Motivates Those Who Participate in Social Media? I believe the motivation lies in the three qualities described by Malcolm Gladwell in his book The Tipping Point.  He described three types of people that are needed for something to go from an idea to widespread adoption; connectors, mavens and salesmen.  The doctors out there on social media likely have a little bit of all these characteristics.  Gladwell said this about connectors; “They are people who “link us up with the world…people with a special gift for bringing the world together”.  With respect to mavens he characterized them as having the ability to “start “word-of-mouth epidemics” due to their knowledge, social skills, and ability to communicate”.  Lastly, salesmen in his view are “persuaders”.  These three traits aptly describe those that have waded into this field.  They must have the confidence to put their message out there with content that captures people’s attention and certainly have the goal of persuading people that it is worth considering what they have to say.  The fundamental drive though comes from a place of harnessing these traits to help people.  Whether writing original content or sharing what others have produced, the social media physician’s goal is generally pure and that is to share knowledge and generate discussion.  For example, if you have a new strategy for reducing infection, the active social media physician would ask “why not share this with the world” rather than limit it to your institution or city. This frontier like field though does come with some caveats before you dip your feet into the collective pool of the various media sites.  As opposed to the more traditional medium of peer reviewed publications there is no one to assess your content prior to its release.  You are your own editor and therefore may miss the mark from time to time by missing a relevant publication that might influence your conclusions.  You must be prepared for the good and the bad.  One can easily appreciate the positive comments that often come but not all posts will be “home runs” and on some occasions the feedback (which will be public) may not be what you had hoped for.  You must constantly reflect on your own potential biases yet strive to improve base of knowledge; adding more ‘signal’ than ‘noise’. Respect for patient confidentiality is paramount and within Canada and elsewhere.  Organizations such as the Canadian Medical Association have set guidelines for conduct in this space that should be adhered to. [Ref 3] This new frontier for the Rugged Individualist is therefore not for the faint of heart.  It does however bring the world closer together and provide one with a post-publication form of peer review.  Once you enter into the fray it may surprise you how much information is in fact out there, that now flows to you through global connections.  It is an evolving form of communication and one that I am happy to part of. In fact, I am a better neonatologist for it. Is it right for you?

AllThingsNeonatal

AllThingsNeonatal

 

The New BPD That Matters

As a Neonatologist I doubt there are many topics discussed over coffee more than BPD.  It is our metric by which we tend to judge our performance as a team and centre possibly more than any other.  This shouldn't be that surprising.  The dawn of Neonatology was exemplified by the development of ventilators capable of allowing those with RDS to have a chance at survival.  As John F Kennedy discovered when his son Patrick was born at 34 weeks, without such technology available there just wasn't much that one could do.  As premature survival became more and more common and the gestational age at which this was possible younger and younger survivors began to emerge.  These survivors had a condition with Northway described in 1967 as classical BPD.  This fibrocystic disease which would cripple infants gave way with modern ventilation to the "new bpd". The New BPD The disease has changed to one where many factors such as oxygen and chorioamnionitis combine to cause arrest of alveolar development along with abnormal branching and thickening of the pulmonary vasculature to create insufficient air/blood interfaces +/- pulmonary hypertension.  This new form is prevalent in units across the world and generally appears as hazy lungs minus the cystic change for the most part seen previously. Defining when to diagnose BPD has been a challenge.  Is it oxygen at 28 days, 36 weeks PMA, x-ray compatible change or something else?  The 2000 NIH workshop on this topic created a new approach to defining BPD which underwent validation towards predicting downstream pulmonary morbidity in follow-up in 2005.  That was over a decade ago and the question is whether this remains relevant today. Benchmarking I don't wish to make light of the need to track our rates of BPD but at times I have found myself asking "is this really important?"  There are a number of reasons for saying this.  A baby who comes off oxygen at 36 weeks and 1 day is classified as having BPD while the baby who comes off at 35 6/7 does not.  Are they really that different?  Is it BPD that is keeping our smallest babies in hospital these days?  For the most part no.  Even after they come off oxygen and other supports it is often the need to establish feeding or adequate weight prior to discharge that delays things these days.  Given that many of our smallest infants also have apnea long past 36 weeks PMA we have all seen babies who are free of oxygen at 38 weeks who continue to have events that keep them in hospital.  In short while we need to be careful to minimize lung injury and the consequences that may follow the same, does it matter if a baby comes off O2 at 36, 37 or 38 weeks if they aren't being discharged due to apnea or feeding issues?  It does matter for benchmarking purposes as one unit will use this marker to compare themselves against another in terms of performance.  Is there something more though that we can hope to obtain? When does BPD matter? The real goal in preventing BPD or at least minimizing respiratory morbidity of any kind is to ensure that after discharge from the NICU we are sending out the healthiest babies we can into the community.  Does a baby at 36 weeks and one day free of O2 and other support have a high risk of coming back to the hospital after discharge or might it be that those that are even older when they free of such treatments may be worse off after discharge.  The longer it takes to come off support one would think, the more fragile you might be.  This was the goal of an important study just published entitled Revisiting the Definition of Bronchopulmonary Dysplasia: Effect of Changing Panoply of Respiratory Support for Preterm Neonates.  This work is yet another contribution to the pool of knowledge from the Canadian Neonatal Network.  In short this was a retrospective cohort study of 1503 babies born at <29 weeks GA who were assessed at 18-21 months of age. The outcomes were serious respiratory morbidity defined as one of: (1) 3 or more rehospitalizations after NICU discharge owing to respiratory problems (infectious or noninfectious); (2) having a tracheostomy (3) using respiratory monitoring or support devices at home such as an apnea monitor or pulse oximeter (4) being on home oxygen or continuous positive airway pressure at the time of assessment While neurosensory impairment being one of: (1) moderate to severe cerebral palsy (Gross Motor Function Classification System ≥3) (2) severe developmental delay (Bayley Scales of Infant and Toddler Development Third Edition [Bayley III] composite score <70 in either cognitive, language, or motor domains) 3) hearing aid or cochlear implant use (4) bilateral severe visual impairment What did they find? The authors looked at 6 definitions of BPD and applied examined how predictive they were of these two outcomes.  The combination of oxygen and/or respiratory support at 36 weeks PMA had the greatest capacity to predict this composite outcome.  It was the secondary analysis though that peaked my interest.  Once the authors identified the best predictor of adverse outcome they sought to examine the same combination of respiratory support and/oxygen at gestational ages from 34 -44 weeks PMA.  The question here was whether the use of an arbitrary time point of 36 weeks is actually the best number to use when looking at these longer term outcomes.  Great for benchmarking but is it great for predicting outcome? It turns out the point in time with the greatest likelihood of predicting occurrence of serious respiratory morbidity is 40 weeks and not 36 weeks.  Curiously, beyond 40 weeks it becomes less predictive.  With respect to neurosensory impairment there is no real difference at any gestational age from 34-44 weeks PMA. From the perspective of what we tell parents these results have some significance.  If they are to be believed (and this is a very large sample) then the infant who remains on O2 at 37 weeks but is off by 38 or 39 weeks will likely fair better than the baby who remains on O2 or support at 40 weeks.  It also means that the risk of neurosensory impairment is largely set in place if the infant born at < 29 weeks remains on O2 or support beyond 33 weeks.  Should this surprise us?  Maybe not.  A baby who is on such support for over 5 weeks is sick and as a result the damage to the developing brain from O2 free radical damage and/or exposure to chorioamnionitis or sepsis is done. It will be interesting to see how this study shapes the way we think about BPD.  From a neurosensory standpoint striving to remove the need for support by 34 weeks may be a goal worth striving for.  Failure to do so though may mean that we at least have some time to reduce the risk of serious respiratory morbidity after discharge. Thank you to the CNN for putting out what I am sure will be a much discussed paper in the months to come.  

AllThingsNeonatal

AllThingsNeonatal

 

The Hidden Pathogen Of Late Onset Sepsis

If you work in the NICU then you have seen your fair share of septic workups for late onset sepsis.  Sepsis is such a common diagnosis that if I had to guess I would say that at least 50% of all discharge summaries would include this in a list of final diagnoses for any VLBW infant.  If you were to look through the chart though you would find that while workups are common, the recovery of a pathogenic bacterium is not as much.  This is in part due to the low threshold that many people have for doing such workups.  A little bit of temperature instability, a few more apneic events than normal or a rise in O2 requirements may all trigger such investigations.  When they come back negative we all feel good that we looked but we also are then quick to blame the etiology on something else.  Mild fluctuations in temperature are written off as overbundling, apnea due to outgrowth of caffeine and a rise in FiO2 to evolving CLD.  Maybe though the explanation at least in some cases is that there was a pathogen but we didn’t test for it. Viruses are everywhere Tis the season so to speak so everyone is on high alert for viruses in our homes, schools, malls etc but many of us consider the NICU to be mostly free of such pathogens.  The truth is we mostly are provided that we all wash our hands well, keep sick contacts from visiting and put on a mask when our coughing starts.  Alas, if you have done a handwashing audit as we have you would know that when looking at technique and duration of handwashing, we don’t always hit 100%.  These audits are for health care practitioners but I have often wondered what sort of results we would see were we to do the same for parents and visitors.  When we know the viruses are out there such as during outbreaks of RSV and influenza we can’t help but send off our samples for respiratory viruses more frequently but what if we did this with intention for every late onset septic workup? Lucky For Us Someone Did Just That! Back in 2014 the following study was published. Viral respiratory tract infections in the neonatal intensive care unit: the VIRIoN-I study.  This was a simple prospective and elegant study in which any infant in the NICU who had never been home and was greater than 72 hours had respiratory samples sent for viral panels within 72 hours of starting antibiotics for presumed late onset sepsis.  The findings were certainly interesting in that 6% of 135 sepsis evaluations tested positive for a virus.  In the analysis, the infants had the following characteristics: tended to be older (41 vs 11 days; P = .007) exposed to individuals with respiratory tract viral symptoms (37% vs 2%; P = .003) lower total neutrophil counts (P = .02) best predictor of viral infection was the caregivers’ clinical suspicion of viral infection (P = .006) What interests me about these results are a couple things.  The first is that as I was once told, the sensitivity of asking if someone has been around sick people is low during peaks in viral outbreaks as who hasn’t?  Perhaps what this study tells us is that within the NICU environment we actually do a reasonable job of keeping such contacts away but when they slip through infections happen.  The second point worth mentioning is that a low neutrophil count is associated which is interesting given how often neutropenia is pointed to as a reason to start antibiotics.  These viruses are troublesome creatures indeed! Further Evidence Arrives At the end of last year a similar study was published by the same group Viral Respiratory Infections in Preterm Infants during and after Hospitalization.  They took a different approach this time out and took nasopharyngeal samples from 189 infants in the NICU (96 term and 93 preterm) within 7 days of birth and then sent samples weekly while in hospital followed by monthly for four months after discharge. In this collection of infants a mere 4 patients tested positive in NICU and all of them under 28 weeks of age at birth!  How do we account for the remarkable reduction in risk while in hospital?  To answer that you can read through the NICU environment in the full article if you have access.  In short, they had a very rigorous infection control set of precautions set up.  Interestingly only one of the infections was with RSV and the unit did not provide prophylaxis for infants in hospital.  Perhaps with precautions like theirs they felt it was unnecessary.  Once discharged a little over a third of patients acquired a viral infection in the first four months at home.  Given the potential risk for readmission and with that to a PICU this rate of viral infection is concerning. Vision for the future! Taken together we can state that viruses do make their way into the NICU but fortunately not as commonly as one might think.  What the last study in particular does remind us though is that we need to ensure that as part of discharge teaching parents take home many of the practices that we have used in the hospital with respect to hand hygiene, limiting visitors and not being afraid to holster some hand sanitizer for those times when soap and water are not so easy to come by.  To be sure viruses are out there but at least for the first few months after discharge for our most vulnerable babies a little paranoia about viruses could go a long way.

AllThingsNeonatal

AllThingsNeonatal

 

The Eyes Have It. No Not Really

Every now and then I come across an instance when I discover that something that I have known for some time truly is not as well appreciated as I might think. Twice in my career I have come across the following situation which has been generalized to eliminate any specific details about a patient.  In essence this is a fictional story but the conclusions are quite real. Case of the Flat Baby A mother arrives at the hospital with severe abdominal pain and in short order is diagnosed with a likely abruption at 26 weeks gestational age. Fetal monitors are attached and reveal a significant fetal bradycardia with a prolonged period of minutes below 100 and sometimes below 60 beats per minute.  She is rushed to the OR where an emergency c-section is performed. A live born infant is handed to the resuscitation team after cord clamping is stopped at 30 seconds due to significant cyanosis and no respirations.  After placing the infant in a polyethylene wrap and performing the initial steps of ventilation there is no respiratory effort and the baby is given PPV.  After no heart rate is noted chest compressions commence followed by intubation and then epinephrine when a heart rate while detected remains below 60.  The team gives a bolus of saline followed by another round of epinephrine and by 10 minutes a pulse of 80 BPM is detected.  While a pulse is present it remains borderline and the baby shows no sign of any respiratory efforts. The care providers at this point have a decision to make about continuing resuscitative efforts or not.  One of the team members performs a physical exam at this stage and notes that the pupils are unresponsive to light with a 3 mm pupillary diameter.  The team questions whether based on this finding irreversible neurological damage has occurred. Pupillary Reactions in Preterm Infants It turns out that much like many organs in the body which have yet to fully mature the same applies to the eye or more specifically in this case the pupil. Robinson studied 50 preterm infants in 1990 and noted that none of the infants under 30 weeks gestational age demonstrated any reaction to light shone in the eye.  After 30 weeks the infants gradually realized this function until by 35 weeks all infants had attained this pupillary reaction to light. Isenberg in the same year when examining 30 preterm infants under 30 weeks noted that in addition to the lack of pupillary constriction to light, as the gestational age decreased the pupillary diameter enlarged.  The youngest infants in this study at 26 weeks had a mean pupillary diameter of 4.7 mm while by 29 weeks this number decreased to 2.9 mm.  This means that the smaller the infant the larger the pupillary size and given that these are also the highest risk infants one can see how the appearance of a "fixed and dilated pupil" could lead one down the wrong path. Conclusion Deciding when to stop a resuscitation is never an easy decision.  Add to this as I recently wrote, even after 10 minutes of resuscitation outcomes may not be as bad as we have thought; Apgar score of 0 at 10 minutes: Why the new NRP recommendations missed the mark.  What I can say and obviously was the main thrust of this piece is that at least when you are resuscitating an infant  < 30 weeks gestational age, leave the eyes out of the decision.  The eyes in this case "do not have it".

AllThingsNeonatal

AllThingsNeonatal

 

The days of the Apgar score may be numbered

One of the first things a student of any discipline caring for newborns is how to calculate the apgar score at birth.  Over 60 years ago Virginia Apgar created this score as a means of giving care providers a consistent snapshot of what an infant was like in the first minute then fifth and if needed 10, 15 and so on if resuscitation was ongoing.  For sure it has served a useful purpose as an apgar score of 0 and 0 gives one cause for real worry.  What about a baby with an apgar of 3 and 7 or 4 and 8?  There are certainly infants who have done very well who initially had low apgar scores and conversely those who had higher apgar scores who have had very significant deleterious outcomes including death.  I don’t mean to suggest that the apgar scores don’t provide any useful predictive value as they are used as part of the criteria to determine if a baby merits whole body cooling or not.  The question is though after 60+ years, has another score been created to provide similar information but enhance the predictive value derived from a score? The Neonatal Resuscitation and Adaptation Score (NRAS) Back in 2015 Jurdi et al published  Evaluation of a Comprehensive Delivery Room Neonatal Resuscitation and Adaptation Score (NRAS) Compared to the Apgar Score.  This new score added into a ten point score resuscitative actions taken at the 1 and 5 minute time points to create a more functional score that included interventions.  The other thing this new score addressed was more recent data that indicated a blue baby at birth is normal (which is why we have eliminated asking the question “is the baby pink?” in NRP.  Knowing that, the colour of the baby in the apgar score may not really be that relevant.  Take for example a baby with an apgar score of 3 at one minute who could have a HR over 100 and be limp, blue and with shallow breathing.  Such a baby might get a few positive pressure breaths and then within 10 seconds be breathing quite well and crying.  Conversely, they might be getting ongoing PPV for several minutes and need oxygen.  Were they also getting chest compressions?  If I only told you the apgar score you wouldn’t have much to go on.  Now look at the NRAS and compare the information gathered using two cardiovascular (C1&2), one neurological test (N1) and two respiratory assessments (R1&2).   The authors in this study performed a pilot study on only on 17 patients really as a proof of concept that the score could be taught and implemented.  Providers reported both scores and found “superior interrater reliability (P < .001) and respiratory component reliability (P < .001) for all gestational ages compared to the Apgar score.”   A Bigger Study Was Needed The same group in 2018 this time led by Witcher published Neonatal Resuscitation and Adaptation Score vs Apgar: newborn assessment and predictive ability.  The primary outcome was the ability of a low score to predict mortality with a study design that was a non-inferiority trial.  All attended deliveries were meant to have both scores done but due to limited numbers of trained personnel who could appropriately administer both scores just under 90% of the total deliveries were assigned scores for comparison.  The authors sought to recruit 450 infants to show that a low NRAS score (0–3) would not be inferior to a similar Apgar at predicting death.  Interestingly an interim analysis found the NRAS to be superior to Apgar when 75.5% of the 450 were enrolled, so the study was stopped.  What led the apgar score to perform poorly in predicting mortality (there were only 12 deaths though in the cohort) was the fact that 49 patients with a 1 minute apgar score of 0-3 survived compared to only 7 infants with a low NRAS score. The other interesting finding was the ability of the NRAS to predict the need for respiratory support at 48 hours with a one minute apgar score of 0-3 being found in 39% of those on support compared to 100% of those with a low NRAS.  Also at 5 minutes a score of 4-6 for the apgar was found in 48% of those with respiratory support at 48 hours vs 87% of those with a similar range NRAS.  These findings were statistically significant while a host of other conditions such as sepsis, hypoglycemia, hypothermia and others were no different in terms of predictive ability of the scores. An Even Bigger Study is Needed To be sure, this study is still small and missed just over 90% of all deliveries so it is possible there is some bias that is not being detected here.  I do think there is something here though which a bigger study that has an army of people equipped to provide the scoring will add to this ongoing story.  Every practitioner who resuscitates an infant is asked at some point in those first minutes to hour “will my baby be ok?”.  The truth is that the apgar score has never lived up to the hope that it would help us provide an accurate clairvoyant picture of what lies ahead for an infant.   Where this score gives me hope is that a score which would at the very least help me predict whether an infant would likely still be needing respiratory support in 48 hours provides the basic answer to the most common question we get in the unit once admitted; “when can I take my baby home”.  Using this score I could respond with some greater confidence in saying “I think your infant will be on support for at least 48 hours”.  The bigger question though which thankfully we don’t have to address too often for the sickest babies at birth is “will my baby survive?”.  If a larger study demonstrates this score to provide a greater degree of accuracy then the “Tipping Point” might just be that to switching over to the NRAS and leaving the apgar score behind.  That will never happen overnight but medicine is always evolving and with time you the reader may find yourself becoming very familiar with this score!

AllThingsNeonatal

AllThingsNeonatal

 

The Art of Doing Nothing

There may be nothing that is harder in medicine.  We are trained to respond to changes in patients condition with a response that more often than not suggests a new treatment or change in management.  Sometimes the best thing for the patient is in fact to do nothing or at least resist a dramatic response to the issue in front of you.  This may be the most common issue facing the new trainee who is undoubtedly biased towards doing something.  Take for instance the situation in which the trainee who is new to the service finding out that their 26 week infant has a PDA.  Their mind races as they digest this information from morning signover.  There is less than 2 hours until they come face to face with their attending who no doubt will ask them the dreaded question.  “What are you going to do about it?”.  When having to choose a path, if they state “I want to sit tight and watch” they fear the thought of the attending thinking they don’t know what to do. Conversely they could stick their neck out and choose to treat with a variety of approaches but then might they be seen as too aggressive?!  The likely path is suggesting treatment but in fact the more I think about it the option of benign neglect may be the best approach or at least one in which if you treat and it doesn’t work the first time you just shrug your shoulders and say “I’ll deal with it till it closes on it’s own”. This post really is a follow-up to a previous one entitled The Pesky PDA.  A Puzzle After All These Years.  What triggered this writing was another before and after comparison of two periods in which the management of PDAs for a unit took a 180 degree turn. Know When to Hold Em And No When to Fold Em This is the essence of the issue for one unit.  Sung SI et al published a paper this month entitled Mandatory Closure Versus Nonintervention for Patent Ductus Arteriosus in Very Preterm Infants.  They describe a before and after comparison of 81 infants from 2009-11 and 97 infants from 2012-14.  All babies were born between 23-26 weeks gestational age.  In the first time period their unit had a mandatory PDA closure policy.  That is they gave one course of indomethacin and if possible a second course followed by surgical ligation.  A significant PDA was defined as one that had a left to right shunt and was at least 2 mm in diameter and the patient had to be ventilated.  Any patient who had been extubated regardless of need for CPAP did not have to have their PDA closed.  In the second time period the group attempted to avoid indomethacin and ligation at all costs and in fact in this cohort none received either. So What Happened? In the first time period 52 (64%) received indomethacin but only 29% responded and a full 37/52 (71%) went on to receive surgical ligation.  Of the 29 that did not receive indomethacin due to contraindications they underwent primary ligation for a total of 82% receiving surgical ligation.  The average day of closure for period 1 was 12.9 days. In period 2 a number of interesting findings occurred. The average day of closure was at 44.2 days.  Five infants were discharged with a PDA with 3 experiencing spontaneous closure after discharge and the remaining infants undergoing transcatheter occlusion.  In period 2 there were more diuretics and fluid restriction employed.  Comparing the two periods for a number of other outcomes reveals some other intriguing findings. Even with such differing approaches there is no difference in mortality, severe IVH, ROP, PVL, NEC or sepsis.  What is different though is the diagnosis of BPD yet there is no difference in total ventilation. In period 2 there is a shift towards more of this ventilation being HFOV less CPAP use at the same time. What Might It All Mean? It is retrospective and therefore we cannot be certain that there are not other variables that are not affecting the results that would have had a better chance of being evened out in an RCT.  Having said that it is intriguing that having a PDA has been associated with BPD in the past but in this study having a PDA for a longer time is associated with a reduction in BPD.  We know that longer periods of invasive mechanical ventilation increase the risk of developing BPD so it is intriguing that that there is no difference in mechanical ventilation yet there is more BPD when you are aggressive with the PDA.  You might postulate that the need for surgery leads to greater need for ventilatory support and therefore damages the lungs but the needs for HFOV was higher in the second phase which at least hints that in terms of aggressiveness, Period 2 infants had a tougher go. The culprit may be the heart.  In period 1 there was a significantly increased rate of myocardial dysfunction and need for inotropes following ligation.  It could well be that left ventricular dysfunction led to pulmonary edema such that in the 24-28 hours after the surgery ventilator requirements were increased and damaged the lung.  The lack of a difference in overall ventilation days supports this possibility.  Looking at the other common risk factors for BPD such as chorioamnionitis and lack of antenatal steroids these are no different between groups.  Although not statistically significant there are more male infants in period 2 which would usually tip the scales towards worse outcome as well.  It does need to be stressed as well that the rate of surgical ligation is higher than any study I have come across so the contribution of the surgery itself to the disparate outcome needs to be seriously considered. What would I do? Despite this study and some others that have preceded it I am not at the point of saying we shouldn’t treat at all.  Our own approach is to give prophylactic indomethacin to such babies and then for the most part if a PDA remains treat one more time but at all costs try and avoid ligation.  An RCT sounds like it is in the works though comparing the two approaches so that will certainly be interesting to see.  It is tough to say what the future holds but to any young trainees who are reading this, the next time you are asked what to do about a PDA you are well within your rights to suggest “Maybe we should do nothing”!

AllThingsNeonatal

AllThingsNeonatal

 

Stubborn PDAs despite prophylactic indomethacin!

As time goes by, I find myself gravitating to reviews of Canadian research more and more.  We have a lot of great research happening in this country of ours and especially when I see an author or two I know personally I find it compelling to review such papers.  Today is one of those days as the lead author for a paper is my colleague Dr. Louis here in Winnipeg.  Let me put his mind at ease in case he reads this by saying that what follows is not a skewering of the paper he just published using Canadian Neonatal Network data (CNN).  Over the last twenty years that I have had the privilege of working in the field of Neonatology we continue to discuss the same things when it comes to the PDA.  Does it really cause problems or is it an association for many outcomes? Does treatment make a difference?  If you treat then what should you use (ibuprofen, indomethacin, paracetamol)? When should you treat and if you treat early should it be in the first few days or right after birth using a prophylactic approach (provided within 12 hours of delivery)?  It is the prophylactic approach which is the subject of this post! Why treat prophylactically? The TIPP trial reported the results in 2001 of the study whose goal was to determine if prophylactic indomethacin use could improve neurosensory impairment at 18 months by reducing rates of severe IVH.  The results of the study are well known and showed that while the rates of severe IVH and PDA ligations were reduced through this approach, there was no actual effect on long term outcome.  The use of this approach fell off after that for many years but recently resurfaced as some units in Canada opted to start the practice again as the two benefits seen above appeared to be worth using the approach.  The thought from a family centred approach, was that eliminating the stress for families of informing them their tiny preterm infant had a serious intracranial bleed and potentially avoiding a surgical ligation with probably vocal cord impairment afterwards were good enough outcomes to warrant this practice.  Having used this approach myself I have to admit one consequence is that indomethacin was so effective at closing the PDA most of the time that over time one begins to assume the PDA is in fact closed and is less likely to go hunting for one when the baby is misbehaving later on in their course.  What if it didn’t close though?  Are there any predictors that can increase our index of suspicion? Answering the question The CNN provides a large database to look retrospectively to answer such a question.  In this article, the authors looked at a period from 2010 to 2015 including all infants < 28 weeks gestational age at birth yielding a very large sample of 7397 infants.  Of these 843 or 12% received prophylactic indomethacin and from there a little over half (465) still had a PDA.  From there, 367 received treatment with eventually 283 needing only medical, 11 having a PDA ligation and 73 having both medical and surgical closure.  From this analysis so far I can tell you that providing prophylactic indomethacin certainly does not guarantee closure! When a myriad of risk factors were put into logistic regression a number of interesting risk factors arose accounting for more of less risk of a PDA that needed surgical ligation despite prophylactic treatment.  Much like all infants in the NICU, the risk for a persistent PDA was highest with declining GA.  The combination of outborn status and short interval of ruptured membranes predicted higher risk.  No doubt this is reflective of less frequent antenatal steroid use and even if provided time for it to work.  Looking at medical or surgical treatment, surfactant therapy increased risk which may be explained by an improvement in oxygenation contributing to increased left to right shunting as PVR drops.  Maternal hypertension and longer duration of rupture of membranes again play a role in reducing risk likely through the mechanism of the former increasing endogenous steroid production and the latter again allowing for steroids to be provided. What can we learn from this paper? I suppose the biggest benefit here is the realization that even with prophylactic indomethacin we are not assured of closure.  In particular if there is a lack of antenatal steroid use or a stressed fetus one should be vigilant for the PDA.  Interestingly, all of the risks seem to point towards antenatal steroid use.  The bottom line then is that this reinforces what is already known and should be the focus of improvement strategies for centres.  Increase the rate of antenatal steroid use and you will reduce the risk of a PDA even in the baby receives prophylactic indomethacin.  I am happy to report that our centre has taken one step towards this goal by reinforcing to our Obstetrical colleagues that when they receive a call from a referring centre and have a woman who might be in labour it is better to err on the side of caution and just give the steroid course.  If they are wrong on arrival then one can always repeat a course later on as we do although repeated courses of steroids are in and of themselves a contentious issue.  What can your centre do to improve your results when it comes to antenatal steroid coverage?

AllThingsNeonatal

AllThingsNeonatal

 

Stop guessing when the NICU team is needed at a delivery

The other day I met with some colleagues from Obstetrics and other members from Neonatology to look at a new way of configuring our delivery suites.  The question on the table was which deliveries which were always the domain of the high risk labour floor could be safely done in a lower acuity area.  From a delivery standpoint they would have all the tools they need but issues might arise from a resuscitation point of view if more advanced resuscitation was needed.  Would you have enough space for a full team, would all the equipment you need be available and overall what is in the best interests of the baby and family? We looked at a longstanding list of conditions both antenatal and intrapartum and one by one tried to decide whether all of these were high risk or if some were more moderate.  Could one predict based on a condition how much resuscitation they might need?  As we worked our way through the list there was much discussion but in the end we were left with expert opinion as there was really no data to go by.  For example, when the topic of IUGR infants came up we pooled our collective experience and all agreed that most of the time these babies seem to go quite well.  After a few shoulder shrugs we were left feeling good about our decision to allow them to deliver in the new area.  Now several days later I have some concern that our thinking was a little too simple.  You see, conditions such as IUGR may present as the only risk factor for an adverse outcome but what if they also present with meconium or the need for a instrument assisted delivery.  We would presume the risk for advanced resuscitation (meaning intubation or chest compressions and/or medication need) would be increased but is there a better way of predicting the extent of this risk? Indeed there might just be An interesting approach to answer this question has been taken by an Argentinian group in their paper Risk factors for advanced resuscitation in term and near-term infants: a case–control study.  They chose to use a prospective case control study matching one case to 4 control infants who did not require resuscitation.  The inclusion criteria were fairly straightforward.  All babies had to be 34 weeks gestational age or greater and free of congenital malformations.  By performing the study in 16 centres they were able to amass 61953 deliveries and for each case they found (N=196) they found 784 deliveries that were matched by day of birth.  The idea here was that by matching consecutive patients who did not require resuscitation you were standardizing the teams that were present at delivery. The antepartum and intrapartum risk factors that were then examined to determine strengths of association with need for resuscitation were obtained from the list of risks as per the NRP recommendations. A Tool For All of Us? What came out of their study was a simple yet effective tool that can help to predict the likelihood of a baby needing resuscitation when all factors are taken into account.   By resuscitation the authors defined this as intubation, chest compressions or medications.  This is pretty advanced resuscitation!  In essence this is a tool that could help us answer the questions above with far better estimation than a shoulder shrug and an “I think so” response.  The table can be found by clicking on this link to download but the table looks like this. By inserting checks into the applicable boxes you get a calculated expected need for resuscitation.  Let’s look at the example that I outlined at the start of the discussion which was an IUGR infant. It turns out that IUGR itself increases the background risk for infants 34 weeks and above from 6% to 55% with that one factor alone.  Add in the presence of fetal bradycardia that is so often seen with each contraction in these babies and the risk increases to 97%!  Based on these numbers I would be hesitant to say that most of these kids should do well.  The majority in fact would seem to need some help to transition into this world. Some words of caution The definition here of resuscitation was intubation, chest compressions or medications.  I would like to presume that the practioners in these centres were using NRP so with respect to chest compressions and medication use I would think this should be comparable to a centre such as ours.  What I don’t know for sure is how quickly these centres move to intubate.  NRP has always been fairly clear that infants may be intubated at several time points during a resuscitation although recent changes to NRP have put more emphasis on the use of CPAP to establish FRC and avoid intubation.  Having said that this study took place from 2011 – 2013 so earlier than the push for CPAP began.  I have to wonder what the effect of having an earlier approach to intubating might have had on these results.  I can only speculate but perhaps it is irrelevant to some degree as even if in many cases these babies did not need intubation now they still would have likely needed CPAP.  The need for any respiratory support adds a respiratory therapist into the mix which in a crowded space with the additional equipment needed makes a small room even smaller.  Therefore while I may question the threshold to intubate I suspect these results are fairly applicable in at least picking out the likelihood of needing a Neonatal team in attendance. Moreover I think we might have a quick tool on our hands for our Obstetrical colleagues to triage which deliveries they should really have us at.  A tool that estimates the risk may be better than a shoulder shrug even if it overestimates when the goal is to ensure safety.

AllThingsNeonatal

AllThingsNeonatal

 

Still performing awake intubations in newborns? Maybe this will change your mind.

If I look back on my career there have been many things I have been passionate about but the one that sticks out as the most longstanding is premedicating newborns prior to non-emergent intubation.  The bolded words in the last sentence are meant to reinforce that in the setting of a newborn who is deteriorating rapidly it would be inappropriate to wait for medications to be drawn up if the infant is already experiencing severe oxygen desaturation and/or bradycardia.  The CPS Fetus and Newborn committee of which I am a member has a statement on the use of premedication which seems as relevant today as when it was first developed.  In this statement the suggested cocktail of atropine, fentanyl and succinylcholine is recommended and having used it in our centre I can confirm that it is effective.  In spite of this recommendation by our national organization there remain those who are skeptical of the need for this altogether and then there are others who continue to search for a better cocktail.  Since I am at the annual conference for the CPS in Quebec city  I thought it would be appropriate to provide a few comments on this topic. Three concerns with rapid sequence induction (RSI) for premedication before intubation 1. "I don't need it.  I don't have any trouble intubating a newborn" - This is perhaps the most common reason I hear naysayers raise.  There is no question that an 60-90 kg practitioner can overpower a < 5kg infant and in particular an ELBW infant weighing < 1 kg.  This misses the point though.  Premedicating has been shown to increase success on the first attempt and shorten times to intubation. Dempsey 2006, Roberts 2006, Carbajal 2007, Lemyre 2009 2.  "I usually get in on the first attempt and am very slick so risk of injury is less." Not really true overall.  No doubt there are those individuals who are highly successful but overall the risk of adverse events is reduced with premedication. (Marshall 1984, Lemyre 2009). I would also proudly add another Canadian study from Edmonton by Dr. Byrne and Dr. Barrington who performed 249 consecutive intubations with predication and noted minimal side effects but high success rates at first pass. 3. "Intubation is not a painful procedure".  This one is somewhat tough to obtain a true answer for as the neonate of course cannot speak to this.  There is evidence available again from Canadian colleagues in 1984 and 1989 that would suggest that infants at the very least experience discomfort or show physiologic signs of stress when intubated using an "awake" approach.  In 1984 Kelly and Finer in Edmonton published Nasotracheal intubation in the neonate: physiologic responses and effects of atropine and pancuronium. This randomized study of atropine with or without pancuronium vs control demonstrated intracranial hypertension only in those infants in the control arm with premedication ameliorating this finding.  Similarly, in 1989 Barrington, Finer and the late Phil Etches also in Edmonton published Succinylcholine and atropine for premedication of the newborn infant before nasotracheal intubation: a randomized, controlled trial. This small study of 20 infants demonstrated the same finding of elimination of intracranial hypertension with premedication.  At the very least I would suggest that having a laryngoscope blade put in your oral cavity while awake must be uncomfortable.  If you still doubt that statement ask yourself whether you would want sedation if you needed to be intubated?  Still feel the same way about babies not needing any? 4.  What if I sedate and paralyze and there is a critical airway?  Well this one may be something to consider.  If one knows there is a large mass such as a cystic hygroma it may be best to leave the sedation or at least the paralysis out.  The concern though that there might be an internal mass or obstruction that we just don't know about seems a little unfounded as a justification for avoiding medications though. Do we have the right cocktail? The short answer is "I don't know".  What I do know is that the use of atropine, an opioid and a muscle relaxant seems to provide good conditions for intubating newborns.  We are in the era of refinement though and as a recent paper suggests, there could be alternatives to consider;Effect of Atropine With Propofol vs Atropine With Atracurium and Sufentanil on Oxygen Desaturation in Neonates Requiring Nonemergency IntubationA Randomized Clinical Trial.  I personally like the idea of a two drug combination for intubating vs.. three as it leaves one less drug to worry about a medication error with.  There are many papers out there looking at different drug combinations.  This one though didn't find a difference between the two combinations in terms of prolonged desaturations between the two groups which was the primary outcome. Interestingly though the process of intubating was longer with atropine and propofol.  Given some peoples reluctance to use RSI at all, any drug combination which adds time to the the procedure is unlikely to go over well.  Stay tuned though as I am sure there will be many other combinations over the next few years to try out!    

AllThingsNeonatal

AllThingsNeonatal

 

Skin-to-skin fad blamed for deaths of babies!

As the practice seems to be winning the world over you can imagine that a headline entitled, 'Skin-to-skin' fad blamed for deaths of babies would get some attention.  This article was sent to me by a colleague after being published last month on Yahoo news service.  The claim is based on the experience of a hospital in Perth that has seen some cases of neonatal suffocation after mothers who were performing skin to skin care fell asleep and rolled onto their newborn.  This "fad" they say is attributable as the cause of death.  Before looking into whether there is any basis for such a claim it may be worth exploring whether Kangaroo Care (KC) otherwise known as Skin to Skin (STS) care is effective. Is KC Effective in the NICU? KC or is an ideal method of involving parents in the care of their premature infant.  It fosters bonding between parents and their hospitalized infant, encourages the family to be with their child and thereby exposes them to other elements of neonatal care that they can take part in. Before you reach the conclusion that KC only serves to enhance the parental experience it does so much more than that.  The practice began in Bogota Columbia in 1979 in order to deal with a shortage of incubators and associated rampant hospital infections.  The results of their intervention were dramatic and lead to the spread of this strategy worldwide.  The person credited with helping to spread the word and establish KC as a standard of care in many NICUs is Nils Bergman and his story and commentary can be found here. The effects of KC are dramatic and effective to reduce many important morbidities and conclusively has led to a reduction in death arguably the most important outcome.  An analysis of effect has been the subject of several Cochrane Collaboration reviews with the most recent one being found here. To summarize though, the use of KC or STS care has resulted in the following overall benefits to premature infants at discharge or 40 - 41 weeks' postmenstrual age: Reduction in mortality  (typical RR 0.68, 95% CI 0.48 to 0.96) nosocomial infection/sepsis  (typical RR 0.57, 95% CI 0.40 to 0.80) hypothermia (typical RR 0.23, 95% CI 0.10 to 0.55) Increase in KMC was found to increase some measures of infant growth, breastfeeding, and mother-infant attachment To put this in perspective, medicine is littered with great medications that never achieved such impact as simply putting your child against your chest.  This is another shining example of doing more with less.  This is not to say that modern medicine and technology does not have its place in the NICU but KC is simply too powerful a strategy not to use and promote routinely in the NICU. What About Term Infants? Much has been written on the subject.  A Pilot study in 2007 by Walters et al found benefits in newborn temperature, glycemic control and initiation of breastfeeding.  Perhaps the strongest evidence for benefit comes from a cochrane review of the subject last updated in 2012. Early skin-to-skin contact for mothers and their healthy newborn infants. This analysis included 34 RCTs with 2177 participants (mother-infant dyads). Breastfeeding at one to four months postbirth (13 trials; 702 participants) (risk ratio (RR) 1.27, 95% confidence interval (CI) 1.06 to 1.53, and SSC increased breastfeeding duration (seven trials; 324 participants) (mean difference (MD) 42.55 days, 95% CI -1.69 to 86.79) but the results did not quite reach statistical significance (P = 0.06). Late preterm infants had better cardio-respiratory stability with early SSC (one trial; 31 participants) (MD 2.88, 95% CI 0.53 to 5.23). Blood glucose 75 to 90 minutes following the birth was significantly higher in SSC infants (two trials, 94 infants) (MD 10.56 mg/dL, 95% CI 8.40 to 12.72). Taken together there are benefits although the impact on breastfeeding rates in term infants show a strong trend while not reaching statistical significance.  Importantly though in this large sample we don't see any increase in mortality nor to my knowledge has there ever been a study to show an increase. How do we deal with this claim from Australia then? I think the problem with this claim is that KC is being blamed after a "root cause analysis" has come to the wrong conclusion.  The problem is not KC but rather a lack of a "falls prevention" strategy on the postpartum units.  Mothers after delivery are exhausted and may be on pain medication so as the saying goes "there is a time and a place".  As our hospital prepares for accreditation again, safety to prevent falls (including babies falling out of mom's arms or in a similar vein mothers falling onto babies) is something that every hospital needs.  Whether a mother is practicing KC, breastfeeding or simply holding her baby if a mother falls asleep while doing so there is a risk to the infant.  If the hospital in this case has seen an increase in such cases of newborn deaths while performing KC then it is likely the hospitals lack of attention to minimizing risk in the postpartum period that is to blame and not KC itself.  Certainly the evidence from rigorously done trials would not support this claim. This hospital would do well to have a comprehensive plan to educate parents about the risks of fatigue, ensure bassinets are next to every bed to provide mothers with an easy transfer if they are tired.  Certainly during the immediate period after delivery mothers, partners of mothers who have just delivered should be encouraged to be with them or advise the mothers if they are tired to put the baby down and rest.  A little education could go a long way! I think it is a cheap out to blame KC for such problems as it turns our attention away from the real issue and that is a lack of policy and education.  So in the end I would like to state emphatically that... No I don't believe the "skin-to-skin fad" is to blame for an increase in deaths!          

AllThingsNeonatal

AllThingsNeonatal

×