Click here for information about our next conference, 9-12 April 2018 in Vienna, Austria:

Future of Neonatal Care - advancing the management of newborns

Jump to content

99nicu... Your Forum in Neonatology!

Welcome to 99nicu, the web community for staff in neonatal medicine!

Become a member for full access to all features: get and give advice in the forums, start your own blog and enjoy benefits! Registration is free :) - click here to register!

Greetings from the 99nicu HQs

Search the Community

Showing results for tags 'apnea of prematurity'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • 99nicu
    • Partners and Sponsors
    • Feedback and support
  • GENERAL NEONATAL CARE
    • prenatal care and fetal growth
    • resuscitation
    • fluid and electrolyte balance
    • nutrition
    • drug treatment and analgesia
    • nursing the neonate
    • family support
    • practical procedures
    • technical equipment
  • NEONATAL MORBIDITY
    • pulmonary disorders
    • cardiovascular problems
    • neurology
    • infections
    • gastroenterology
    • hematology
    • metabolic disorders
    • disorders of the genitourinary tract
    • ophtalmology
    • orthopedic problems
    • dermatology
    • neonatal malignancies
  • ORGANISATION OF NEONATAL CARE
    • education, organisation and evaluation
    • ethical and legal aspects
  • MESSAGE BOARD
    • Job Board
    • Reviews
    • Neonatology in the News
    • Congresses and courses
    • Other notes

Blogs

  • Reflections incubated in the 99nicu HQ
  • My blog, Gaza, Palestine
  • Blog selvanr4
  • Blog ali
  • Neonatology Research Blog
  • Blog JACK
  • Blog MARPSIE
  • Blog Christina Arent
  • Blog docspaleh
  • HIE and brain death
  • emad shatla's Blog
  • Medhaw
  • DR.MAULIK SHAH
  • keith barrington's neonatalresearch.org
  • sridharred15's Blog
  • Petra's Blog
  • shesu
  • All Things Neonatal
  • Dr Alok Sharma
  • Simulation and Technology Enhanced Learning as a Tool to Improve Neonatal Outcomes
  • Hesham Tawakol

Calendars

  • Community Calendar

Categories

  • 99nicu News

Categories

  • Pharmacopedia
  • Procedures

Found 2 results

  1. Given that many preterm infants as they near term equivalent age are ready to go home it is common practice to discontinue caffeine sometime between 33-34 weeks PMA. We do this as we try to time the readiness for discharge in terms of feeding, to the desire to see how infants fare off caffeine. In general, most units I believe try to send babies home without caffeine so we do our best to judge the right timing in stopping this medication. After a period of 5-7 days we generally declare the infant safe to be off caffeine and then move on to other issues preventing them from going home to their families. This strategy generally works well for those infants who are born at later gestations but as Rhein LM et al demonstrated in their paper Effects of caffeine on intermittent hypoxia in infants born prematurely: a randomized clinical trial., after caffeine is stopped, the number of intermittent hypoxic (IH) events are not trivial between 35-39 weeks. Caffeine it would seem may still offer some benefit to those infants who seem otherwise ready to discontinue the medication. What the authors noted in this randomized controlled trial was that the difference caffeine made when continued past 34 weeks was limited to reducing these IH events only from 35-36 weeks but the effect didn’t last past that. Why might that have been? Well it could be that the babies after 36 weeks don’t have enough events to really show a difference or it could be that the dose of caffeine isn’t enough by that point. The latter may well be the case as the metabolism of caffeine ramps up during later gestations and changes from a half life greater than a day in the smallest infants to many hours closer to term. Maybe the caffeine just clears faster? Follow-up Study attempts to answer that very question. Recognizing the possibility that levels of caffeine were falling too low after 36 weeks the authors of the previous study begun anew to ask the same question but this time looking at caffeine levels in saliva to ensure that sufficient levels were obtained to demonstrate a difference in the outcome of frequency of IH. In this study, they compared the original cohort of patients who did not receive caffeine after planned discontinuation (N=53) to 27 infants who were randomized to one of two caffeine treatments once the decision to stop caffeine was made. Until 36 weeks PMA each patient was given a standard 10 mg/kg of caffeine case and then randomized to two different strategies. The two dosing strategies were 14 mg/kg of caffeine citrate (equals 7 mg/kg of caffeine base) vs 20 mg/kg (10 mg/kg caffeine base) which both started once the patient reached 36 weeks in anticipation of increased clearance. Salivary caffeine levels were measured just prior to stopping the usual dose of caffeine and then one week after starting 10 mg/kg dosing and then at 37 and 38 weeks respectively on the higher dosing. Adequate serum levels are understood to be > 20 mcg/ml and salivary and plasma concentrations have been shown to have a high level of agreement previously so salivary measurement seems like a good approach. Given that it was a small study it is work noting that the average age of the group that did not receive caffeine was 29.1 weeks compared to the caffeine groups at 27.9 weeks. This becomes important in the context of the results in that earlier gestational age patients would be expected to have more apnea which is not what was observed suggesting a beneficial effect of caffeine even at this later gestational age. Each patient was to be monitored with an oximeter until 40 weeks as per unit guidelines. So does caffeine make a difference once term gestation is reached? A total of 32 infants were enrolled with 12 infants receiving the 14 mg/kg and 14 the 20 mg/kg dosing. All infants irrespective of assigned group had caffeine concentrations above 20 mcg/mL ensuring that a therapeutic dose had been received. The intent had been to look at babies out to 40 weeks with pulse oximetry even when discharged but owing to drop off in compliance with monitoring for a minimum of 10 hours per PMA week the analysis was restricted to infants at 37 and 38 weeks which still meant extension past 36 weeks as had been looked at already in the previous study. The design of this study then compared infants receiving known therapeutic dosing at this GA range with a previous cohort from the last study that did not receive caffeine after clinicians had determined it was no longer needed. The outcomes here were measured in seconds per 24 hours of intermittent hypoxia (An IH event was defined as a decrease in SaO2 by ⩾ 10% from baseline and lasting for ⩾5 s). For graphical purposes the authors chose to display the number of seconds oxygen saturation fell below 90% per day and grouped the two caffeine patients together given that the salivary levels in both were therapeutic. As shown a significant difference in events was seen at all gestational ages. Putting it into context The scale used I find interesting and I can’t help but wonder if it was done intentionally to provide impact. The outcome here is measured in seconds and when you are speaking about a mean of 1200 vs 600 seconds it sounds very dramatic but changing that into minutes you are talking about 20 vs 10 minutes a day. Even allowing for the interquartile ranges it really is not more than 50 minutes of saturation less than 90% at 36 weeks. The difference of course as you increase in gestation becomes less as well. When looking at the amount of time spent under 80% for the groups at the three different gestational ages there is still a difference but the amount of time at 36, 27 and 38 weeks was 229, 118 and 84 seconds respectively without caffeine (about 4, 2 and 1 minute per day respectively) vs 83, 41, and 22 seconds in the caffeine groups. I can’t help but think this is a case of statistical significance with questionable clinical significance. The authors don’t indicate that any patients were readmitted with “blue spells” who were being monitored at home which then leaves the sole question in my mind being “Do these brief periods of hypoxemia matter?” In the absence of a long-term follow-up study I would have to say I don’t know but while I have always been a fan of caffeine I am just not sure. Should we be in a rush to stop caffeine? Well, given that the long term results of the CAP study suggest the drug is safe in the preterm population I would suggest there is no reason to be concerned about continuing caffeine a little longer. If the goal is getting patients home and discharging on caffeine is something you are comfortable with then continuing past 35 weeks is something that may have clinical impact. At the very least I remain comfortable in my own practice of not being in a rush to stop this medication and on occasion sending a patient home with it as well.
  2. Caffeine has been used for over 30 years to treat episodes of apnea in preterm infants. Caffeine citrate is considered one of the most safety and effective drugs, with few or no side effects, used in our Neonatal Intensive Care Units (NICU). Many randomized studies describe the use and benefits of caffeine in the preterm population. Studies based on caffeine prophylactic use in preterm infants, as well as new indications out of apnea of prematurity have been recently published. Despite being one of the drugs most used in our NICU, are not yet available clinical practice guidelines and / or protocols in many of our NICU. Therefore, I invite you to participate in a study to determine the use of caffeine and its indications in NICUs around the world through the following survey. Once analyzed all the surveys, I promise to send you the results. Those you are interested you can send me your email adress and I will send you the survey. Dr. Laura Castells Vilella lauracastellsvilella@gmail.com Neonatologist and NICU’s Manager IDC Salud Hospital General de Catalunya (Barcelona, Spain)
×