Jump to content


Want to join the discussions?

Sign up for a free membership! 

If you are a member already, log in!

(lost your password? reset it here)

99nicu.org 99nicu.org

Search the Community

Showing results for tags 'cpap'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • 99nicu
    • Partners and Sponsors
    • Feedback and support
    • prenatal care and fetal growth
    • resuscitation
    • fluid and electrolyte balance
    • nutrition
    • drug treatment and analgesia
    • nursing the neonate
    • family support
    • practical procedures
    • technical equipment
    • pulmonary disorders
    • cardiovascular problems
    • neurology
    • infections
    • gastroenterology
    • hematology
    • metabolic disorders
    • disorders of the genitourinary tract
    • ophtalmology
    • orthopedic problems
    • dermatology
    • neonatal malignancies
    • education, organisation and evaluation
    • ethical and legal aspects
    • Job Board
    • Reviews
    • Congresses and courses
    • Other notes


  • Department of Brilliant Ideas
  • My blog, Gaza, Palestine
  • Blog selvanr4
  • Blog ali
  • Neonatology Research Blog
  • Blog JACK
  • Blog MARPSIE
  • Blog Christina Arent
  • Blog docspaleh
  • HIE and brain death
  • emad shatla's Blog
  • Medhaw
  • keith barrington's neonatalresearch.org
  • sridharred15's Blog
  • Petra's Blog
  • Abel
  • All Things Neonatal
  • Dr Alok Sharma
  • Simulation and Technology Enhanced Learning as a Tool to Improve Neonatal Outcomes
  • Hesham Tawakol
  • spotted: NICU
  • Bubbly Girl in NICU
  • Narongsak Nakwan
  • Dr. Rajeev Malhotra
  • Smells like DR spirit
  • Ravi Agarwal
  • Traumatic LP
  • Antibiotic prescribing in neonatal units: an European survey


  • 99nicu
  • How everything works
  • Terms and conditions


  • Pharmacopedia


  • Gastrointestinal Quizzes
  • Neurology Quizzes
  • Pulmonary Quizzes

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



First name

Last name









Found 12 results

  1. A couple years back at the Canadian Pediatric Society annual meeting a discussion broke out about extubating infants to higher levels of CPAP. Conventional thinking had been to use levels between 5 – 8 cm H2O typically. I shared with the group the experience we had in Winnipeg (unpublished) of using higher levels from 9 -12 cm H2O with some degree of success in allowing earlier extubation. The group thought it was interesting but pointed out the lack of robust research in the area so were not so keen to “try it out”. Non-invasive positive pressure ventilation (NIPPV) has been used for some time in the neonatal world and has been compared to CPAP for extubation success and found to be superior as in this review Comparison of Complications and Efficacy of NIPPV and Nasal CPAP in Preterm Infants With RDS. In this review though as in others more typical CPAP levels are used so the question is whether the same efficacy would be seen with high level CPAP vs NIPPV. Canadian Study to the Rescue The study here is by Ahmad HA et al Comparison of High CPAP versus NIPPV in Preterm Neonates: A Retrospective Cohort Study and seeks to answer this question albeit in a retrospective fashion. The study is not well controlled since it is retrospective but it may be the best we have for now. Over a 3 year period the authors examined the outcomes for babies trialed on high CPAP (hCPAP of at least 9 cm H20) vs NIPPV. In each case they looked at the first episode of use. The modalities could have been used for extubation or as a primary means of support. The primary outcome was failure of the modality as defined by either intubation or change to the other strategy within 7 days. A total of 53 infants received hCPAP vs 119 NIPPV. Why the big difference? Since this was retrospective and not randomized it was up to the individual practioner which modality they wanted to try. If the majority of the unit favoured NIPPV this is why there would be such a difference. Herein lies the benefit of the primary outcome as if “conventional wisdom” was wrong and the other modality would be better then we should see a greater movement to the other strategy or more intubations in one group suggesting superiority of one vs the other. The groups however aren’t entirely equivalent at baseline. The babies in the hCPAP group are quite a bit smaller on the one hand which would favour the NIPPV group. On the other hand there is almost a significant difference in surfactant provision for the hCPAP arm which might favour the hCPAP group. The other thing also nearing statistical significance is when the intervention was trialed. The median time is 2 days for teh NIPPV group and 7 for hCPAP suggesting one may have been used more prophylactically and the other post extubation. Different strategies might make a difference to outcome? Also no infants received MIST or INSURE and all were started on traditional lower levels of CPAP prior to surfactant. Results The results tell an interesting story (I think) with the primary outcome being no different 62% in the hCPAP vs 55% with NIPPV. Looking at the patient outcomes in the figure from the paper one gets a little more detail and can surmise how people viewed the two modalities as a strategy and can see they were a bit different. There seems to have more confidence in the unit with NIPPV as a way to prevent intubation. For those that failed hCPAP 12/33 were intubated as the next step (about a third) while the other 2/3 were trialed on NIPPV. Looking at those started out on NIPPV, 38/66 were intubated directly 58% or almost 2/3 while 28/66 were trialed on hCPAP. Of the ones trialed on hCPAP 20/28 or 71% were still intubated. Comparatively of those who were changed from nCPAP to NIPPV 11/21 were intubated or about 50%. The authors find no difference in the primary outcome which is true. The problem of course with this analysis though is that there was no standardization with determining when one would choose to intubate. This issue can really play with the results. Let’s say for example that one Neonatologist really believes for the most part that NIPPV is the mode that can really prevent intubation more than hCPAP. It is conceivable that the reason in crossover intubations are less with NIPPV is that people were willing to tolerate a slightly higher pCO2 or a couple more apneas since they believe the modality is best and the infant will “get better soon”. On the other hand, infants already on NIPPV who are deteriorating might be intubated more readily as the attending might think “this hCPAP is a bunch of malarky” It is worth mentioning that the incidence of air leak was no different between the two, nor was NEC or feeding intolerance from exposing the babies to such high pressures. Conclusions The study doesn’t “prove” anything. I don’t see it as a complete waste though as it does a number of things. It does show that small infants can be managed with hCPAP in NICU without any significant increase in complications. It also sets the stage for a couple future prospective trials I can see. Firstly, a trial of traditional CPAP vs hCPAP is needed as some units don’t have access to NIPPV or simply don’t use. The second is a prospective trial with clear parameters for failure between hCPAP and NIPPV. Lastly, the authors ran the NIPPV and CPAP off ventilators in the units. The work of breathing would be potentially different with the use of devices solely designed for CPAP with fluidic flips. It would be important to use optimal devices for both modalities in such a trial and I for one can’t wait to see them.
  2. With American Thanksgiving coming up this weekend a post about “cold turkey” seemed apropos. You can’t work in Neonatology and not be familiar with CPAP. We have learned much about this modality in the last couple decades as clinicians have moved more and more towards non-invasive support as the preferred strategy for supporting newborns regardless of gestational age. Ask a Neonatologist how they use CPAP and you will find varied opinions about how high to go and how quickly to wean. I have written about one weaning strategy before on this blog using monitor oxygen saturation histogram data to make such decisions Improve your success rate in weaning from CPAP. One question though that has often been asked is what level of CPAP is best to remove a baby from? In particular for our smallest infants who may have BPD or reduced pulmonary reserve due to lower numbers of alveoli as they continue to develop should you discontinue at +5, +4 or +3? This question is what some creative authors from Texas sought to answer in the paper being discussed today. To Wean or Not To Wean? Kakkilaya V et al published Discontinuing Nasal Continuous Positive Airway Pressure in Infants ≤32 Weeks Gestational Age: A Randomized Control Trial in the Journal of Pediatrics this October. The authors studied infants from 23+0 to 32+6 weeks gestational age at birth and looked at whether a strategy of discontinuing from +5 or weaning from +5 to +3 then stopping resulted in fewer failures from stoppage. Infants were recruited in two ways. Some infants were intubated with planned extubation to pressures from +5 to +8 while others were on CPAP always. The study included 226 infants or which 116 were assigned to control so had removal of CPAP at +5 if after 24 hours they met the stability criteria below. The other 110 infants reduced CPAP from +5 once every 24 hours if the same criteria were met. Reasons for restarting CPAP were also as shown below at the bottom of Table 1. If an infant failed then they went back to the level of CPAP they had been on previously when stability criteria were met. Once they had stability criteria at that level again for 24 hours the wean could resume. Did they manage to find a difference? Table 5 reveals the significant finding here which is that for the primary outcome there was no difference and it didn’t matter whether the infants were ventilated or not. One finding that was different was the number of neonates who failed to stop CPAP two or more times. This favoured the weaning approach. Aside from that the groups were comparable and there really wasn’t much benefit seen from one approach versus the other. Thoughts About the Study The study was a fairly straightforward one and although there wasn’t a significant result found there are some questions that I think we can think about. The stability criteria did not have results from histogram analysis included as a measure of stability. I can’t help but wonder if addition of this approach would have identified some infants who were actually not ready to wean. Having said that, one challenge is to come to an agreement on what a stable histogram is. Based on a survey from my own colleagues recently I would say like many things in Neonatology, we are all over the map. If this study were to be repeated using histograms for decisions on weaning some sort of agreement would be needed on what qualifies as a stable histogram. Our group has already tended to use +4 as the final weaning step for our ELBW and VLBW infants based on anecdotal experience that many of these kids if stopped at +5 will fail even when they seem to be stable. Repeating this study looking at weaning from +4 to +3 before stopping vs stopping at +4 could be interesting as well. Finally, I do wonder if the wean was too fast to show a difference. It is not uncommon practice in the smallest infants to keep them on +4 for a couple days even if it seems that the histograms would indicate the baby is ready to stop CPAP. Perhaps a weaning strategy of allowing a minimum of q48h instead of q24h would have found different results? I do think the authors explored a great question and I would be reluctant here to “throw the baby out with the bathwater”. There is something here but based on the methodology (which I don’t think is flawed per se) I think they just couldn’t prove what I suspect is true.
  3. I am currently writing my dissertation on the use of non-invasive ventilation to deliver nitric oxide in neonates and I was wondering: What are people‘s experiences of using non-invasive iNO with CPAP, Nasal cannula, oxygen hood etc? Which gestational have you primarily used it with? What were the indications/ underlying pathologies? Have you found this has reduced the need for mechanical ventilation or ECMO? Have you needed to deliver higher doses to achieve the same effect seen on mechanical ventilation? Which countries have you seen this being practiced? Any other insights or information would be greatly appreciated
  4. I doubt there is a unit in the world where at least once a day a discussion ensues about whether an infant is ready to wean or come off their CPAP. For many years we have made the decision based on a variety of markers. Some people would comment on the work of breathing, others on the FiO2 or what the oxygen saturations are at the moment as we round on the patient. Our unit has been pulling oxygen histograms off the patient monitor for years now to provide a more objective measurement to determine if an infant is ready or not. What is a histogram? It is a bar graph representation of the percentage of time in a 24 hour period that an infant has spent in several different oxygen saturation ranges. A group in Alabama recently published the following paper Oxygen saturation histograms predict nasal continuous positive airway pressure-weaning success in preterm infants. which attempts to answer the question as to whether this practice has merit. What did they do? They looked at 36 babies (24 control and 12 cases) in which controls were babies who successfully weaned off CPAP when on less than or equal to 30% oxygen in the first week of life and compared them to infants who failed and had to go back on. Success was defined as remaining off CPAP for 7 consecutive days while failure was having to go back on with in 7 days of discontinuation. All infants were <1250g at birth or less then or equal to 30 weeks gestational age at delivery. Infants were enrolled prospectively in an observational case-control study. During the study goal oxygen saturations were 90-95% and oxygen histograms were monitored q6h by respiratory therapists. Importantly, during the study there was no standard approach to weaning patients off of CPAP but as per many NICUs, discontinuation occurred when FiO2 was low and there were only 1-2 events per day requiring stimulation. The authors controlled for a number of potential factors which could influence success such as GA, BW, Sex, receipt of antenatal steroids, ventilation, caffeine dose, FiO2 prior to weaning and surfactant but found no differences between groups. What did they find though? As you might expect there was a difference found and it was in the histograms. The infants who ultimately succeeded in coming off CPAP were better oxygenated in the 24 hours prior to coming off CPAP. Of note, the cases had a median FiO2 of 22% and the controls 21% which was not statistically different. Looking at the above figure you can see that there were statistically significant differences in the two groups with the babies who successfully weaned off CPAP having significantly higher levels of oxygen saturation in the 95% and above ranges. The authors concluded “The optimal value of oxygen saturation achievement >95% to predict CPAP-weaning success by Youden index was 31.6% with a sensitivity of 75% and specificity of 75%.” In other words if you have about 30% of the time spent above 95% in the 24 hours prior to coming off CPAP you have a pretty good chance of success! Applying the information Who doesn’t like a study that validates your own practice?! The study is really a beginning though as the study tells us that for babies that are mildly ill (as evidenced by being on room air or 22%) that you can utilize the histogram data to make decisions about when it is best to stop CPAP. What this study though examined is a particular population of small infants who were all taken off CPAP in the first week of life. Would the same principals apply to an older infant or one who is larger at birth? I would like to think so but there are many infants who are on oxygen with BPD who are also weaning off CPAP after many weeks of age. We use histograms in this population as well to guide our weaning but an important measurement that must be taken into account is the FiO2. I can really manipulate a histogram to show anything I want for a baby on oxygen. If it is better from one day to the next is it because the lungs have improved or has the average FiO2 simply been higher in the preceding 24 hours? Conversely if it is worse does the infant have atelectasis or pneumonia or has nursing been more restrictive in FiO2? Further studies in this area need to create an objective tool that takes into account level of support and mean FiO2 when interpreting the histogram. Failure to do so would lead at times to incorrect decisions if you solely look at a bar graph. As with everything in NICU, the devil is in the details!
  5. To be sure there are fans of both HFNC and CPAP out there. I have often heard from other Neonatologists that they use HFNC and find positive results while other centres refuse to use it in favour of the tried and true CPAP. Turning to the literature you will find some conflicting results with some studies suggesting equity and others more recently favouring CPAP. There has been speculation as to why one would be superior to the other and now we appear to have some answers as to where the differences lie. A Physiologic Study Liew et al published Physiological effects of high-flow nasal cannula therapy in preterm infants this month in an elegant study of 40 infants. The study was fairly simple in design either randomizing infants <37 weeks to starting with nCPAP +6 and then transitioning to 8 l/min HFNC followed by stepwise reductions of 1 l/min until 2 l/min was reached or the reverse, starting with 2 l/min and working their way up and then transitioning to nCPAP+6. All infants were on one or the other modality at the start and were all at least 3 days old, they were randomized to one or the other arm regardless of where they started off. Physiologic measurements were taken at each step including the following: Mv -Minute ventilation pEEP – nasopharyngeal end-expiratory pressure pEECO2 -nasopharyngeal end-expiratory CO2 RR – respiratory rate; SpO2 – oxygen saturation TCCO2 – transcutaneous CO2 Vt – tidal volume A Fabian device was used to deliver either HFNC or CPAP at the different flows for all patients. The Results The authors certainly found some interesting results that I think shed some light on why comparisons of HFNC and CPAP have been so inconsistent. Table 2 contains the results of the study and I will point out the main findings below. 1. Flow matters – Compared to nCPAP+6 which is fairly consistent flows below 6 l/min deliver pEEP that is below 6 cm H2O. 2. Keep the mouth shut – With CPAP whether the mouth is open or closed the Fabian device delivers +6 cm H2O. As you can see from the table, when the mouth is open transmitted pressures drop off substantially. The infant put on a flow of even 6-8 l/min of HFNC sees pressures less than +6 consistently. 3. As flows increase end expiratory CO2 decreases. HFNC seems to help wash out CO2 4. Low flow rates on HFNC do not seem to help with ventilation as much as higher flow rates. In order to maintain Mv these infants at 2 l/min flow become tachypneic. The low pressures produced likely cause some atelectasis and hence tachypnea. Size matters! Beware of excessive pressures. An additional finding of this study was that on “multiple linear regression, flow rate, mouth position, current weight and gestation but not prong-to-nares ratio significantly predicted pEEP and account for a significant amount of its variance (F(4431)=143.768, p<0.0001), R2=0.572, R2=adjusted 0.568).” Essentially, infants under 1000g in particular could see pEEP levels as high as 13 cm H2O with flows of 8 l/min. The variability in transmitted pressures with HFNC is shown nicely in this figure from the study. As flows increase above 6 l/min the actual pressures delivered become less reliable. Conclusions Looking at this data, it becomes evident why HFNC may be failing in its attempt to dethrone nCPAP. In order to achieve higher pressures and provide comparable distending pressure to nCPAP you need higher flows. With higher flows though come the problem of greater variability in delivered pressure. While the average pressure delivered may be equivalent or even higher than a CPAP of +6, in some infants (especially those below 1000g) one may be delivering significantly higher pressures than intended which may help with oxygenation and preventing intubation but others may be seeing far less than needed. What it comes down to is that nCPAP is better at delivering a consistent amount of pressure. Studies using lower flows of HFNC likely failed to show superiority to CPAP as they just didn’t deliver enough pressure. An example of this was the study by Roberts CT et al Nasal High-Flow Therapy for Primary Respiratory Support in Preterm Infants, in which flows of 6-8 l/min were used. Other studies using higher pressures could have been problematic due to open mouths, or larger babies not receiving as much benefit. I am not saying that we should throw out HFNC entirely however. Depending on the unit you practice in you might not be able to use CPAP but HFNC may be allowed. If you had to choose between no support or HFNC I would likely go with the HFNC. For me at least, if I want to delivery reliable pressures in my tertiary care NICU I will be calling for the CPAP.
  6. This past week, Canada lost a rock icon in Gord Downie of the Tragically Hip. My late high school, university and medical school days seem to have him and the band forever enmeshed in memories from that time. In honour of his passing I thought it suitable to pay tribute to him by using one of the band’s famous song titles as the title for this post. No this isn’t a post about the band but rather a controversial ventilation strategy. While CPAP has been around for some time to support our infants after extubation, a new method using high frequency nasal ventilation has arrived and just doesn’t want to go away. Depending on your viewpoint, maybe it should or maybe it is worth a closer look. I have written about the modality before in High Frequency Nasal Ventilation: What Are We Waiting For? While it remains a promising technology questions still remain as to whether it actually delivers as promised. Better CO2 elimination? For those who have used a high frequency oscillator, you would know that it does a marvelous job of removing CO2 from the lungs. If it does so well when using an endotracheal tube, why wouldn’t it do just as good a job when used in a non-invasive way? That is the hypothesis that a group of German Neonatologists put forth in their paper this month entitled Non-invasive high-frequency oscillatory ventilation in preterm infants: a randomised controlled crossover trial. In this relatively small study of 26 preterm infants who were all less than 32 weeks at delivery, babies following extubation or less invasive surfactant application were randomized to either receive nHFOV then CPAP for four hours each or the reverse order for the same duration. The primary outcome here was reduction in pCO2 with the goal of seeking a difference of 5% or more in favour of nHFOV. Based on their power calculation they thought they would need 24 infants total and therefore exceeded that number in their enrollment. The babies in both arms were a bit different which may have confounded the results. The group randomized to CPAP first were larger (mean BW 1083 vs 814g), and there was a much greater proportion of males in the CPAP group. As well, the group randomized first to CPAP had higher baseline O2 saturation of 95% compared to 92% in the nHFOV group. Lastly and perhaps most importantly, there was a much higher rate of capillary blood sampling instead of arterial in the CPAP first group (38% vs 15%). In all cases the numbers are small but when looking for such a small difference in pCO2 and the above mentioned factors tipping the scales one way or the other in terms of illness severity and accuracy of measurement it does give one reason to pause when looking at the results. The Results No difference was found in the mean pCO2 from the two groups. As expected, pCO2 obtained from capillary blood gases nearly met significance for being higher than arterial samples (50 vs 47; p=0.052). A similar rate of babies had to drop out of the study (3 on the nCPAP first and 2 on the nHFOV side). In the end should we really be surprised by the results? I do believe that in the right baby who is about to fail nCPAP a trial of nHFOV may indeed work. By what means I really don’t understand. Is it the fact that the mean airway pressure is generally set higher than on nCPAP in some studies? Could it be the oscillatory vibration being a kind of noxious stimulus that prevents apneic events through irritation of the infant? While traditional invasive HFOV does a marvelous job of clearing out CO2 I have to wonder how the presence of secretions and a nasopharynx that the oscillatory wave has to avoid (almost like a magic wave that takes a 90 degree turn and then moves down the airway) allows much of any of the wave to reach the distal alveoli. It would be similar to what we know of inhaled steroids being deposited 90 or so percent in the oral cavity and pharynx. There is just a lot of “stuff” in the way from the nostril to the alveolus. This leads me to my conclusion that if it is pCO2 you are trying to lower, I wouldn’t expect any miracles with nHFOV. Is it totally useless? I don’t think so but for now as a respiratory modality I think for the time being it will continue to be “looking for a place to happen”
  7. This is becoming “all the rage” as they say. I first heard about the strategy of feeding while on CPAP from colleagues in Calgary. They had created the SINC (Safe Individualized Feeding Competence) program to provide an approach to safely introducing feeding to those who were still requiring CPAP. As news of this approach spread a great deal of excitement ensued as one can only imagine that in these days when attainment of oral feeding is a common reason for delaying discharge, could getting an early start shorten hospital stay? I could describe what they found with the implementation of this strategy but I couldn’t do it the same justice as the presenter of the data did at a recent conference in Winnipeg. For the slide set you can find them here. As you can imagine, in this experience out of Calgary though they did indeed find that wonderful accomplishment of shorter hospital stays in the SINC group. We have been so impressed with the results and the sensibility of it all that we in fact have embraced the concept and introduced it here in both of our units. The protocol for providing this approach is the following. I have to admit, while I have only experienced this approach for a short time the results do seem to be impressive. Although anecdotal a parent even commented the other day that she felt that SINC was instrumental in getting her baby’s feeding going! With all this excitement around this technique I was thrown a little off kilter when a paper came out suggesting we should put a full stop to feeding on CPAP! Effect of nasal continuous positive airway pressure on the pharyngeal swallow in neonates What caused my spirits to dampen? This study enrolled preterm infants who were still on CPAP at ≥ 34 weeks PMA and were taking over 50% of required feeding volumes by NG feeding. The goal was to look at 15 patients who were being fed on CPAP +5 and with a mean FiO2 of 25% (21-37%) using video fluoroscopic swallowing studies to determine whether such patients aspirate when being fed. The researchers became concerned when each of the first seven patients demonstrated abnormalities of swallowing function indicating varying degrees of aspiration. As such they took each patient off CPAP in the radiology suite and replaced it with 1 l/min NP to achieve acceptable oxygen saturations and repeated the study again. The results of the two swallow studies showed remarkable differences in risk to the patient and as such the recruitment of further patients was stopped due to concerns of safety and a firm recommendation of avoiding feeding while on CPAP was made. Table 2. Percentage of all swallows identified with swallowing dysfunction on-nCPAP off-nCPAP Variable Mean ± s.d. Mean ± s.d. Median (q1–q3) Mean ± s.d. Median (q1–q3) P-value Mild pen. % 20.1±16 20 (4.5–35) 15.4± 7.6 20 (9–20) 0.656 Deep pen. % 43.7±15.4 38.5 (30–59) 25.3± 8.8 25 (18.2–32) 0.031 Aspiration % 33.5±9.4 30 (27.3–44.4) 14.6± 7 15 (9.1–20) 0.016 Nasopharyngeal reflux % 42.8±48.5 18.2 (0–100) 44.2± 45.4 18.2 (5–92) 0.875 Taking these results at face value it would seem that we should put an abrupt halt to feeding while on CPAP but as the saying goes the devil is in the details… CPAP Using Ram Cannulae Let me start off by saying that I don’t have any particular fight to pick with the RAM cannulae. They serve a purpose and that is they allow CPAP to be delivered with a very simple set of prongs and avoid the hats, straps and such of more traditional CPAP devices. We have used them as temporary CPAP delivery when moving a patient from one area to another. As the authors state the prongs are sized in order to ensure the presence of a leak. This has to do with the need to provide a way for the patient to exhale when nasal breathing. Prongs that are too tight have a large leak and may not deliver adequate pressure while those that are too tight may inadvertently deliver high pressure and therefore impose significant work of breathing on the patient. Even with appropriate sizing these prongs do not allow one to exhale against a low pressure or flow as is seen with the “fluidic flip” employed with the infant flow interface. With the fluidic flip, exhalation occurs against very little resistance thereby reducing work of breathing which is not present with the use of the RAM cannula. A comparison of the often used “bubble CPAP” to a variable flow device also showed lower work of breathing when variable flow is used. The Bottom Line Trying to feed an infant who is working against a constant flow as delivered by the RAM cannulae is bound to cause problems. I don’t think it should be a surprise to find that trying to feed while struggling to breathe increases the risk of aspiration. Similarly, under treating a patient by placing them on nasal prongs would lead to increased work of breathing as while you may provide the needed O2 it is at lower lung volumes. Increasing work of breathing places infants at increased risk of aspiration. That is what I would take from this study. Interestingly, looking at the slide set from Calgary they did in fact use CPAP with the fluidic flip. Smart people they are. It would be too easy to embrace the results of this study and turn your nose to the SINC approach to feeding on CPAP. Perhaps somewhere out there someone will read this and think twice about abandoning the SINC approach and a baby will be better for it.
  8. I had a chance recently to drive a Tesla Model S with autopilot. Taking the car out on a fairly deserted road near my home I flicked the lever twice to activate the autopilot feature and put my hands behind my head while the vehicle took me where I wanted to go. As I cruised down the road with the wheel automatically turning with the curves in the road and the car speeding up or slowing down based on traffic and speed limit notices I couldn’t help but think of how such technology could be applied to medicine. How far away could the self driving ventilator or CPAP device be from development? I have written about automatic saturation adjustments in a previous post but this referred to those patients on mechanical ventilation. Automatic adjustments of FiO2. Ready for prime time? Why is this goal so important to attain? The reasoning lies in the current design trends in modern NICUs. We are in the middle of a large movement towards single patient room NICUs which have many benefits such as privacy which may lead to enhanced breastfeeding rates and increased parental visitation. The downside, having spoken to people in centres where such designs are already in place is the challenge nursing faces when given multiple assignments of babies on O2. If you have to go from room to room and a baby is known to be labile in their O2 saturations it is human nature to turn the O2 up a little more than you otherwise would to give yourself a “cushion” while you are out of the room. I really don’t fault people in this circumstance but it does pose the question as to whether in a few years we will see a rise in oxygen related tissue injury such as CLD or ROP from such practice. In the previous post I wrote about babies who are ventilated but these infants will often be one to one nursed so the tendency to overshoot the O2 requirements may be less than the baby on non- invasive ventilation. A System For Controlling O2 Automatically For Infants on Non-Invasive Ventilation This month in Archives Dr. Dargaville and colleagues in Australia provide two papers, the first demonstrating the validation of the mathematical algorithm that they developed to control O2 and the second a clinical report outlining how well the system actually performed on patients. The theoretical paper Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. is a challenge to comprehend although validates the approach in the end while the clinical paper at least for me was easier to digest Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. The study was really a proof of concept with 20 preterm infants (mean GA 27.5 weeks, 8 days of age on average) included who each underwent two hours of manual control by nursing to keep saturations between 90-94% and then 4 hours of automated control (sats 91 – 95%) then back to manual for two hours. The slightly shifted ranges were required due to the way in which midpoint saturations are calculated. The essential setup was a computer equipped with an algorithm to make adjustments in FiO2 using an output to a motor that would adjust the O2 blender and then feedback from an O2 saturation monitor back to the computer. The system was equipped with an override to allow nursing to adjust in the event of poor signal or lack of response to the automatic adjustment. The results though demonstrate that the system works and moreover does a very good job! The average percentage of time that the saturations were in the target range were significantly better with automated control (81% automated, 56% manual). As well as depicted in the following figure the amount of time spent in both hypoxic and hyperoxic ranges was considerable with manual control but non-existent on either tail with automated control (defined as < 85% or > 98% where black bars are manual control and white automatic). From the figure you can see that the amount of time the patients are in target range are much higher with automatic control but is this simply because in addition to automatic control, nurses are “grabbing the wheel” and augmenting the system here? Not at all. “During manual control epochs, FiO2 adjustments of at least 1% were made 2.3 (1.3–3.4) times/hour by bedside staff. During automated control, the minimum alteration to FiO2 of 0.5% was being actuated by the servomotor frequently (9.9 alterations/min overall), and changes to measured FiO2 of at least 1% occurred at a frequency of 64 (49–98) /hour. When in automated control, a total of 18 manual adjustments were made in all 20 recordings (0.24 adjustments/hour), a reduction by 90% from the rate of manual adjustments observed during manual control (2.3/hour).” From the above quote from the paper it is clear that automated control works to keep the saturation goal through roughly 7 X the number of adjustments than nursing makes per hour. It is hard to keep up with that pace when you have multiple assignments but that is what you need I suppose! The use of the auto setting here reduced the amount of nursing interventions to adjust FiO2 by 90% and yields tighter control of O2 saturations. Dare to Dream Self driving oxygen administration is coming and this proof of concept needs to be developed and soon into a commercial solution. The risk of O2 damage to developing tissues is too great not to bring this technology forward to the masses. As we prepare to move into a new institution I sincerely hope that this solution arrives in time but regardless I know our nurses and RRTs will do their best as they always do until such a device comes along. When it does imagine all of the time that could be devoted to other areas of care once you were able to move away from the non-invasive device!
  9. This may sound familiar as I wrote about this topic in the last year but the previous post was restricted to infants who were under 1000g. High Flow Nasal Cannula be careful out there had a main message that suggested the combined outcome of BPD or death was more prevalent when HFNC is used alone or with CPAP than when CPAP is used alone. The question remains though whether this applies to larger infants. Without looking at the evidence for that combined outcome most people would say there is unlikely to be a difference. Larger more mature babies have a much lower risk of BPD or death so proponents of HFNC would say it is simpler to use and helps prevent nasal breakdown as well. The question remains as to whether all outcomes are the same in larger infants and that is the point of this post. A Non-Inferiority Trial First off it is important to understand what this type of trial is. The first requirement is that the two treatments have both been compared to a placebo and found to be both effective. Once you establish that you have a choice between two treatment options then you eliminate the placebo and compare them head to head. What you are looking for in this type of trial is to determine not whether one is better than the other but that there is no difference in a clinical outcome of interest. If you find no difference then the next step is to look at other outcomes that might be of interest and see if there are any benefits to picking one versus the other. In the case of CPAP vs HNFC, if a non-inferiority trial showed no difference in an important outcome such as length of stay but nasal breakdown was less with HFNC it might lead a unit to use HFNC for their infants. Okay, now that we have that cleared up we can move on to an actual study examining this very subject. Nasal High-Flow Therapy for Primary Respiratory Support in Preterm Infants. This was an interesting study with a great name (The HIPSTER trial) that enrolled infants > 28 weeks and 0 days with none of the infants receiving surfactant but either being randomized to HFNC or CPAP after delivery. These infants were your typical modern day cohort of babies who may avoid intubation and surfactant by establishing FRC early with positive pressure applied to the nose through one of these devices. The end point for the study was treatment failure within 72 hours. If an infant failed in the HFNC they could have a trial of CPAP whereas in the CPAP group they were intubated. For each infant in the HFNC group flow was set from 6-8 l/min and for CPAP 6-8 cmH2O. Treatment was considered to have failed if an infant receiving maximal support (high-flow therapy at a gas flow of 8 liters per minute or CPAP at a pressure of 8 cm of water) met one or more of the following criteria: FiO2 of 0.4 or higher Arterial or free flowing cap gas with a pH of 7.2 or less plus a pCO2 > 60 mm Hg obtained at least 1 hour after starting treatment Two or more episodes of apnea requiring positive-pressure ventilation within a 24-hour period or six or more episodes requiring any intervention within a 6-hour period. Infants with an urgent need for intubation and mechanical ventilation. So what happened? The trial randomized 583 infants (278 HFNC, 286 CPAP) but was halted by the data and safety monitoring committee after an analysis of the first 515 revealed that the outcome was worse in the HFNC group (25.5% failure rate vs 13.3 for CPAP). Interestingly treatment failures were more common in babies below and above 32 weeks so it was not just the smallest infants who failed. Another interesting finding was that the most common reason for treatment failure was criteria 1 (FiO2 > 40%) while intubation was higher for all infants but did not reach statistical significance. Curiously what did reach a significant difference was criteria #4 (18.4% urgent intubations in the CPAP group vs 5.6% in the HFNC group). You might be tempted to therefore ponder which is worse, a little O2 or being intubated but you need to recall the trial design which was set up to provide this kind of result. If you failed HFNC you were placed on CPAP whereas if you failed CPAP you were intubated. In the HFNC group, 78 infants were deemed to have failed but 28 of them were in fact “rescued by CPAP”. It therefore isn’t a fair comparison when it comes to urgent intubation since if you failed CPAP there wasn’t another option. Not a total loss Nasal trauma was indeed much lower in the HFNC group, occurring only 8.3% vs 18.5% of the time with CPAP. Pneumothorax was also found to be significantly different with none of the patients in the HFNC group having that complication vs 2.1% in the CPAP group. What this study tells us is that as a primary modality to treat newborns with RDS who have not received surfactant it is preferable to use CPAP in the first 72 hours. Some of you may say it might not say that at all but consider the impact of having more babies exposed to high FiO2. We know from other studies that high FiO2 can be quite damaging to preterm infants and this study was certainly not powered to look at all those important outcomes such as ROP, PVL and BPD. The authors report them and found no difference but without adequate power to show a difference I wouldn’t take much comfort in those findings. I think were things may settle out though is what to do in more mature infants. There is no question that for those on chronic respiratory support there is some risk of nasal breakdown. Although I don’t have much experience with HFNC I would think that for the older patient who either already has BPD at 36 weeks or is close to that point but reliant on +4 or +5 CPAP that HFNC might help “give them a break”. As such I don’t see this as a total loss but rather an option to try when CPAP for whatever reason is not tolerated. As a primary therapy for non-invasive management RDS I will keep my CPAP for all babies thank you.
  10. Dear 99nicu Member, We are an international academic research team comprised of clinicians, designers, engineers, and analysts coordinated from Seattle Children’s Research Institute. We are seeking your input as part of a landscape assessment survey about the current non-invasive respiratory support technologies used around the world. Our goal is to use the survey data to inform design and development priorities for durable non-invasive neonatal and pediatric respiratory support systems that are suitable for less-resourced healthcare settings. We expect also to publish the results and provide the de-identified raw data to the global community for further analysis. Your can begin the survey by clicking on this the link here: https://redcap.iths.org/surveys/?s=CTNmMyKedr or copying and pasting the link into your web browser address bar and pressing Enter. If you have colleagues who might be interested in taking part in the survey, especially clinicians working in low and middle income countries, please forward them the survey link and ask them to consider taking the survey! The survey takes about 10 minutes to complete, depending on your answers, and is anonymous. You can leave your contact information separately at the very end of the survey, and we will do our best to stay in touch as we analyze the data. The survey has been reviewed by our IRB. Thank you for your time and support. Sincerely, The Pediatric Respiratory Support Research Team
  11. A one day study day covering hot topics in Neonatal ventilation Organised by the Evelina London Children's Hospital and King's College London Details: http://www.guysandstthomasevents.co.uk/paediatrics-training/neonatal-ventilation-updates-hot-topics-and-workshops/ A4 flyer - Neonatal Ventilation 2014 - low res.pdf
  12. We have Drager Babylog 8000plus in our unit for Mechanical Ventilation. Now we intend to acquire CPAP unit. My concerns 1. Bubble CPAP or Nasal CPAP? Is there any convincing evidence that the former superior to the latter? The former is more expensive though. 2.Can you recommend any particular unit? I have seen demonstrations from F & P ( Bubble) and Phoenix ( Nasal).
  • Create New...